doi:10.48550/arXiv.2008.02243>.">

gerbil: Generalized Efficient Regression-Based Imputation with Latent Processes (original) (raw)

Implements a new multiple imputation method that draws imputations from a latent joint multivariate normal model which underpins generally structured data. This model is constructed using a sequence of flexible conditional linear models that enables the resulting procedure to be efficiently implemented on high dimensional datasets in practice. See Robbins (2021) <doi:10.48550/arXiv.2008.02243>.

Version: 0.1.9
Depends: R (≥ 2.10)
Imports: base, DescTools, graphics, grDevices, lattice, MASS, mvtnorm, openxlsx, parallel, pbapply, stats, truncnorm, utils
Suggests: dplyr, knitr, mice, rmarkdown, testthat (≥ 2.1.0)
Published: 2023-01-12
DOI: 10.32614/CRAN.package.gerbil
Author: Michael Robbins [aut, cre], Max Griswold [ctb], Pedro Nascimento de Lima [ctb]
Maintainer: Michael Robbins
License: GPL-2
NeedsCompilation: no
Materials: README, NEWS
In views: MissingData
CRAN checks: gerbil results

Documentation:

Downloads:

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=gerbilto link to this page.