doi:10.1093/jpe/rtac096>.">

glmm.hp: Hierarchical Partitioning of Marginal R2 for Generalized Mixed-Effect Models (original) (raw)

Conducts hierarchical partitioning to calculate individual contributions of each predictor (fixed effects) towards marginal R2 for generalized linear mixed-effect model (including lm, glm and glmm) based on output of r.squaredGLMM() in 'MuMIn', applying the algorithm of Lai J.,Zou Y., Zhang S.,Zhang X.,Mao L.(2022)glmm.hp: an R package for computing individual effect of predictors in generalized linear mixed models.Journal of Plant Ecology,15(6)1302-1307<doi:10.1093/jpe/rtac096>.

Version: 1.0-0
Depends: R (≥ 3.4.0), MuMIn, ggplot2, vegan
Imports: lme4
Published: 2025-10-08
DOI: 10.32614/CRAN.package.glmm.hp
Author: Jiangshan Lai ORCID iD [aut, cre], Kim Nimon [aut], Yao Liu [aut]
Maintainer: Jiangshan Lai
License: GPL-2 | GPL-3 [expanded from: GPL]
URL: https://github.com/laijiangshan/glmm.hp
NeedsCompilation: no
Citation: glmm.hp citation info
CRAN checks: glmm.hp results

Documentation:

Downloads:

Reverse dependencies:

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=glmm.hpto link to this page.