glmmLasso: Variable Selection for Generalized Linear Mixed Models by L1-Penalized Estimation (original) (raw)
A variable selection approach for generalized linear mixed models by L1-penalized estimation is provided, see Groll and Tutz (2014) <doi:10.1007/s11222-012-9359-z>. See also Groll and Tutz (2017) <doi:10.1007/s10985-016-9359-y> for discrete survival models including heterogeneity.
| Version: | 1.6.3 |
|---|---|
| Imports: | stats, minqa, Matrix, Rcpp (≥ 0.12.12), methods |
| LinkingTo: | Rcpp, RcppEigen |
| Published: | 2023-08-23 |
| DOI: | 10.32614/CRAN.package.glmmLasso |
| Author: | Andreas Groll |
| Maintainer: | Andreas Groll |
| License: | GPL-2 |
| NeedsCompilation: | yes |
| In views: | MixedModels |
| CRAN checks: | glmmLasso results |
Documentation:
| Reference manual: | glmmLasso.html , <glmmLasso.pdf> |
|---|
Downloads:
| Package source: | glmmLasso_1.6.3.tar.gz |
|---|---|
| Windows binaries: | r-devel: glmmLasso_1.6.3.zip, r-release: glmmLasso_1.6.3.zip, r-oldrel: glmmLasso_1.6.3.zip |
| macOS binaries: | r-release (arm64): glmmLasso_1.6.3.tgz, r-oldrel (arm64): glmmLasso_1.6.3.tgz, r-release (x86_64): glmmLasso_1.6.3.tgz, r-oldrel (x86_64): glmmLasso_1.6.3.tgz |
| Old sources: | glmmLasso archive |
Reverse dependencies:
| Reverse imports: | autoMrP |
|---|
Linking:
Please use the canonical formhttps://CRAN.R-project.org/package=glmmLassoto link to this page.