doi:10.1002/sim.9513> and Archer et al (2024)<doi:10.1186/s13045-024-01553-6>. False discovery rate controlled variable selection is provided using model-X knock-offs.">

hdcuremodels: High-Dimensional Cure Models (original) (raw)

Provides functions for fitting various penalized parametric and semi-parametric mixture cure models with different penalty functions, testing for a significant cure fraction, and testing for sufficient follow-up as described in Fu et al (2022)<doi:10.1002/sim.9513> and Archer et al (2024)<doi:10.1186/s13045-024-01553-6>. False discovery rate controlled variable selection is provided using model-X knock-offs.

Version: 0.0.5
Depends: R (≥ 4.2.0)
Imports: doParallel, flexsurv, flexsurvcure, foreach, ggplot2, ggpubr, glmnet, knockoff, mvnfast, parallel, plyr, methods, survival, withr
Suggests: knitr, Rdsdp, rmarkdown, roxygen2, testthat (≥ 3.0.0)
Published: 2025-07-31
DOI: 10.32614/CRAN.package.hdcuremodels
Author: Han Fu [aut], Kellie J. Archer ORCID iD [aut, cre], Tung Lam Nguyen [rev] (Reviewed the package for ROpenSci)
Maintainer: Kellie J. Archer <archer.43 at osu.edu>
BugReports: https://github.com/kelliejarcher/hdcuremodels/issues
License: MIT + file
URL: https://github.com/kelliejarcher/hdcuremodels
NeedsCompilation: no
Citation: hdcuremodels citation info
Materials: README
CRAN checks: hdcuremodels results [issues need fixing before 2025-12-05]

Documentation:

Downloads:

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=hdcuremodelsto link to this page.