doi:10.48550/arXiv.1603.01700>.">

hdm: High-Dimensional Metrics (original) (raw)

Implementation of selected high-dimensional statistical and econometric methods for estimation and inference. Efficient estimators and uniformly valid confidence intervals for various low-dimensional causal/ structural parameters are provided which appear in high-dimensional approximately sparse models. Including functions for fitting heteroscedastic robust Lasso regressions with non-Gaussian errors and for instrumental variable (IV) and treatment effect estimation in a high-dimensional setting. Moreover, the methods enable valid post-selection inference and rely on a theoretically grounded, data-driven choice of the penalty. Chernozhukov, Hansen, Spindler (2016) <doi:10.48550/arXiv.1603.01700>.

Version: 0.3.2
Depends: R (≥ 3.0.0)
Imports: MASS, glmnet, ggplot2, checkmate, Formula, methods
Suggests: testthat, knitr, rmarkdown, formatR, xtable, mvtnorm, markdown
Published: 2024-02-14
DOI: 10.32614/CRAN.package.hdm
Author: Martin Spindler [cre, aut], Victor Chernozhukov [aut], Christian Hansen [aut], Philipp Bach [ctb]
Maintainer: Martin Spindler <martin.spindler at gmx.de>
License: MIT + file
NeedsCompilation: no
Citation: hdm citation info
Materials: README
In views: CausalInference, Econometrics, MachineLearning
CRAN checks: hdm results

Documentation:

Downloads:

Reverse dependencies:

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=hdmto link to this page.