doi:10.1016/j.jmva.2018.02.002>. (2) Liang, W., Ma, S., Zhang, Q., and Zhu, T. (2021). Integrative sparse partial least squares. Statistics in Medicine, <doi:10.1002/sim.8900>.">

iSFun: Integrative Dimension Reduction Analysis for Multi-Source Data (original) (raw)

The implement of integrative analysis methods based on a two-part penalization, which realizes dimension reduction analysis and mining the heterogeneity and association of multiple studies with compatible designs. The software package provides the integrative analysis methods including integrative sparse principal component analysis (Fang et al., 2018), integrative sparse partial least squares (Liang et al., 2021) and integrative sparse canonical correlation analysis, as well as corresponding individual analysis and meta-analysis versions. References: (1) Fang, K., Fan, X., Zhang, Q., and Ma, S. (2018). Integrative sparse principal component analysis. Journal of Multivariate Analysis, <doi:10.1016/j.jmva.2018.02.002>. (2) Liang, W., Ma, S., Zhang, Q., and Zhu, T. (2021). Integrative sparse partial least squares. Statistics in Medicine, <doi:10.1002/sim.8900>.

Version: 1.1.0
Depends: R (≥ 3.5.0)
Imports: caret, graphics, grDevices, irlba, stats
Published: 2022-01-03
DOI: 10.32614/CRAN.package.iSFun
Author: Kuangnan Fang [aut], Rui Ren [aut, cre], Qingzhao Zhang [aut], Shuangge Ma [aut]
Maintainer: Rui Ren
License: GPL-2 | GPL-3 [expanded from: GPL (≥ 2)]
NeedsCompilation: no
CRAN checks: iSFun results

Documentation:

Downloads:

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=iSFunto link to this page.