inlamemi: Missing Data and Measurement Error Modelling in INLA (original) (raw)
Facilitates fitting measurement error and missing data imputation models using integrated nested Laplace approximations, according to the method described in Skarstein, Martino and Muff (2023) <doi:10.1002/bimj.202300078>. See Skarstein and Muff (2024) <doi:10.48550/arXiv.2406.08172> for details on using the package.
| Version: | 1.1.0 |
|---|---|
| Depends: | R (≥ 2.10) |
| Imports: | dplyr, ggplot2, rlang, stats, methods, scales |
| Suggests: | INLA, knitr, testthat (≥ 3.0.0), tibble, rmarkdown, spelling |
| Published: | 2024-10-31 |
| DOI: | 10.32614/CRAN.package.inlamemi |
| Author: | Emma Skarstein |
| Maintainer: | Emma Skarstein |
| License: | MIT + file |
| URL: | https://emmaskarstein.github.io/inlamemi/,https://github.com/emmaSkarstein/inlamemi |
| NeedsCompilation: | no |
| Additional_repositories: | https://inla.r-inla-download.org/R/stable/ |
| Language: | en-US |
| Citation: | inlamemi citation info |
| Materials: | README, NEWS |
| CRAN checks: | inlamemi results |
Documentation:
Downloads:
Linking:
Please use the canonical formhttps://CRAN.R-project.org/package=inlamemito link to this page.