doi:10.6339/24-JDS1138>.">

irboost: Iteratively Reweighted Boosting for Robust Analysis (original) (raw)

Fit a predictive model using iteratively reweighted boosting (IRBoost) to minimize robust loss functions within the CC-family (concave-convex). This constitutes an application of iteratively reweighted convex optimization (IRCO), where convex optimization is performed using the functional descent boosting algorithm. IRBoost assigns weights to facilitate outlier identification. Applications include robust generalized linear models and robust accelerated failure time models. Wang (2025) <doi:10.6339/24-JDS1138>.

Version: 0.2-1.0
Depends: R (≥ 3.5.0)
Imports: mpath (≥ 0.4-2.21), xgboost
Suggests: R.rsp, DiagrammeR, survival, Hmisc
Published: 2025-02-04
DOI: 10.32614/CRAN.package.irboost
Author: Zhu Wang ORCID iD [aut, cre]
Maintainer: Zhu Wang
License: GPL (≥ 3)
NeedsCompilation: no
Citation: irboost citation info
Materials: README,
CRAN checks: irboost results

Documentation:

Downloads:

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=irboostto link to this page.