ldbod: Local Density-Based Outlier Detection (original) (raw)
Flexible procedures to compute local density-based outlier scores for ranking outliers. Both exact and approximate nearest neighbor search can be implemented, while also accommodating multiple neighborhood sizes and four different local density-based methods. It allows for referencing a random subsample of the input data or a user specified reference data set to compute outlier scores against, so both unsupervised and semi-supervised outlier detection can be implemented.
| Version: | 0.1.2 |
|---|---|
| Depends: | R (≥ 3.2.0) |
| Imports: | stats, RANN, mnormt |
| Published: | 2017-05-26 |
| DOI: | 10.32614/CRAN.package.ldbod |
| Author: | Kristopher Williams |
| Maintainer: | Kristopher Williams <kristopher.williams83 at gmail.com> |
| License: | GPL-3 |
| URL: | https://github.com/kwilliams83/ldbod |
| NeedsCompilation: | no |
| Materials: | README |
| In views: | AnomalyDetection |
| CRAN checks: | ldbod results |
Documentation:
Downloads:
Linking:
Please use the canonical formhttps://CRAN.R-project.org/package=ldbodto link to this page.