doi:10.1007/978-0-387-73186-5_11>, Carpenter, Goldstein & Rasbash (2003) <doi:10.1111/1467-9876.00415>, and Chambers & Chandra (2013) <doi:10.1080/10618600.2012.681216>.">

lmeresampler: Bootstrap Methods for Nested Linear Mixed-Effects Models (original) (raw)

Bootstrap routines for nested linear mixed effects models fit using either 'lme4' or 'nlme'. The provided 'bootstrap()' function implements the parametric, residual, cases, random effect block (REB), and wild bootstrap procedures. An overview of these procedures can be found in Van der Leeden et al. (2008) <doi:10.1007/978-0-387-73186-5_11>, Carpenter, Goldstein & Rasbash (2003) <doi:10.1111/1467-9876.00415>, and Chambers & Chandra (2013) <doi:10.1080/10618600.2012.681216>.

Version: 0.2.4
Depends: R (≥ 3.5.0)
Imports: dplyr (≥ 0.8.0), Matrix, nlmeU, ggplot2, ggdist, HLMdiag, purrr, forcats, stats, statmod, tidyr, magrittr, tibble
Suggests: lme4 (≥ 1.1-7), nlme, testthat, mlmRev, knitr, rmarkdown, doParallel, foreach
Published: 2023-02-11
DOI: 10.32614/CRAN.package.lmeresampler
Author: Adam Loy ORCID iD [aut, cre], Spenser Steele [aut], Jenna Korobova [aut]
Maintainer: Adam Loy
BugReports: https://github.com/aloy/lmeresampler/issues
License: GPL-3
URL: https://github.com/aloy/lmeresampler
NeedsCompilation: no
Materials: README,
In views: MixedModels
CRAN checks: lmeresampler results

Documentation:

Downloads:

Reverse dependencies:

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=lmeresamplerto link to this page.