mcmc: Markov Chain Monte Carlo (original) (raw)
Simulates continuous distributions of random vectors using Markov chain Monte Carlo (MCMC). Users specify the distribution by an R function that evaluates the log unnormalized density. Algorithms are random walk Metropolis algorithm (function metrop), simulated tempering (function temper), and morphometric random walk Metropolis (Johnson and Geyer, 2012, <doi:10.1214/12-AOS1048>, function morph.metrop), which achieves geometric ergodicity by change of variable.
Version: | 0.9-8 |
---|---|
Depends: | R (≥ 3.6.0) |
Imports: | stats |
Suggests: | xtable, Iso |
Published: | 2023-11-16 |
DOI: | 10.32614/CRAN.package.mcmc |
Author: | Charles J. Geyer and Leif T. Johnson |
Maintainer: | Charles J. Geyer |
License: | MIT + file |
URL: | http://www.stat.umn.edu/geyer/mcmc/,https://github.com/cjgeyer/mcmc |
NeedsCompilation: | yes |
Materials: | |
In views: | Bayesian |
CRAN checks: | mcmc results |
Documentation:
Downloads:
Reverse dependencies:
Linking:
Please use the canonical formhttps://CRAN.R-project.org/package=mcmcto link to this page.