doi:10.1214/12-AOS1048>, function morph.metrop), which achieves geometric ergodicity by change of variable.">

mcmc: Markov Chain Monte Carlo (original) (raw)

Simulates continuous distributions of random vectors using Markov chain Monte Carlo (MCMC). Users specify the distribution by an R function that evaluates the log unnormalized density. Algorithms are random walk Metropolis algorithm (function metrop), simulated tempering (function temper), and morphometric random walk Metropolis (Johnson and Geyer, 2012, <doi:10.1214/12-AOS1048>, function morph.metrop), which achieves geometric ergodicity by change of variable.

Version: 0.9-8
Depends: R (≥ 3.6.0)
Imports: stats
Suggests: xtable, Iso
Published: 2023-11-16
DOI: 10.32614/CRAN.package.mcmc
Author: Charles J. Geyer and Leif T. Johnson
Maintainer: Charles J. Geyer
License: MIT + file
URL: http://www.stat.umn.edu/geyer/mcmc/,https://github.com/cjgeyer/mcmc
NeedsCompilation: yes
Materials:
In views: Bayesian
CRAN checks: mcmc results

Documentation:

Downloads:

Reverse dependencies:

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=mcmcto link to this page.