mikropml: User-Friendly R Package for Supervised Machine Learning Pipelines (original) (raw)
An interface to build machine learning models for classification and regression problems. 'mikropml' implements the ML pipeline described by Topçuoğlu et al. (2020) <doi:10.1128/mBio.00434-20> with reasonable default options for data preprocessing, hyperparameter tuning, cross-validation, testing, model evaluation, and interpretation steps. See the website <https://www.schlosslab.org/mikropml/> for more information, documentation, and examples.
| Version: | 1.7.0 |
|---|---|
| Depends: | R (≥ 4.1.0) |
| Imports: | caret, dplyr, e1071, glmnet, kernlab, methods, MLmetrics, randomForest, rlang, rpart, S4Vectors, SingleCellExperiment, stats, SummarizedExperiment, tidyselect, TreeSummarizedExperiment, utils, xgboost |
| Suggests: | assertthat, doFuture, forcats, foreach, furrr, future, future.apply, ggplot2, knitr, progress, progressr, purrr, rmarkdown, roxygen2, rsample, styler, testthat, tidyr, usethis |
| Published: | 2025-10-29 |
| DOI: | 10.32614/CRAN.package.mikropml |
| Author: | Begüm Topçuoğlu |
| Maintainer: | Kelly Sovacool |
| BugReports: | https://github.com/SchlossLab/mikropml/issues |
| License: | MIT + file |
| URL: | https://www.schlosslab.org/mikropml/,https://github.com/SchlossLab/mikropml |
| NeedsCompilation: | no |
| Citation: | mikropml citation info |
| Materials: | README, NEWS |
| CRAN checks: | mikropml results |
Documentation:
Downloads:
Linking:
Please use the canonical formhttps://CRAN.R-project.org/package=mikropmlto link to this page.