doi:10.18637/jss.v045.i02>; 'mice', described by van Buuren and Groothuis-Oudshoorn (2011) <doi:10.18637/jss.v045.i03>; 'missForest', described by Stekhoven and Buhlmann (2012) <doi:10.1093/bioinformatics/btr597>; 'missMDA', described by Josse and Husson (2016) <doi:10.18637/jss.v070.i01>; and 'pcaMethods', described by Stacklies et al. (2007) <doi:10.1093/bioinformatics/btm069>. The central assumption behind 'missCompare' is that structurally different datasets (e.g. larger datasets with a large number of correlated variables vs. smaller datasets with non correlated variables) will benefit differently from different missing data imputation algorithms. 'missCompare' takes measurements of your dataset and sets up a sandbox to try a curated list of standard and sophisticated missing data imputation algorithms and compares them assuming custom missingness patterns. 'missCompare' will also impute your real-life dataset for you after the selection of the best performing algorithm in the simulations. The package also provides various post-imputation diagnostics and visualizations to help you assess imputation performance.">

missCompare: Intuitive Missing Data Imputation Framework (original) (raw)

Offers a convenient pipeline to test and compare various missing data imputation algorithms on simulated and real data. These include simpler methods, such as mean and median imputation and random replacement, but also include more sophisticated algorithms already implemented in popular R packages, such as 'mi', described by Su et al. (2011) <doi:10.18637/jss.v045.i02>; 'mice', described by van Buuren and Groothuis-Oudshoorn (2011) <doi:10.18637/jss.v045.i03>; 'missForest', described by Stekhoven and Buhlmann (2012) <doi:10.1093/bioinformatics/btr597>; 'missMDA', described by Josse and Husson (2016) <doi:10.18637/jss.v070.i01>; and 'pcaMethods', described by Stacklies et al. (2007) <doi:10.1093/bioinformatics/btm069>. The central assumption behind 'missCompare' is that structurally different datasets (e.g. larger datasets with a large number of correlated variables vs. smaller datasets with non correlated variables) will benefit differently from different missing data imputation algorithms. 'missCompare' takes measurements of your dataset and sets up a sandbox to try a curated list of standard and sophisticated missing data imputation algorithms and compares them assuming custom missingness patterns. 'missCompare' will also impute your real-life dataset for you after the selection of the best performing algorithm in the simulations. The package also provides various post-imputation diagnostics and visualizations to help you assess imputation performance.

Version: 1.0.3
Depends: R (≥ 3.5.0)
Imports: Amelia, data.table, dplyr, ggdendro, ggplot2, Hmisc, ltm, magrittr, MASS, Matrix, mi, mice, missForest, missMDA, pcaMethods, plyr, rlang, stats, utils, tidyr, VIM
Suggests: testthat, knitr, rmarkdown, devtools
Published: 2020-12-01
DOI: 10.32614/CRAN.package.missCompare
Author: Tibor V. Varga ORCID iD [aut, cre], David Westergaard ORCID iD [aut]
Maintainer: Tibor V. Varga
BugReports: https://github.com/Tirgit/missCompare/issues
License: MIT + file
NeedsCompilation: no
Materials: NEWS
In views: MissingData
CRAN checks: missCompare results

Documentation:

Downloads:

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=missCompareto link to this page.