mrIML: Multi-Response (Multivariate) Interpretable Machine Learning (original) (raw)
Builds and interprets multi-response machine learning models using 'tidymodels' syntax. Users can supply a tidy model, and 'mrIML' automates the process of fitting multiple response models to multivariate data and applying interpretable machine learning techniques across them. For more details see Fountain-Jones (2021) <doi:10.1111/1755-0998.13495> and Fountain-Jones et al. (2024) <doi:10.22541/au.172676147.77148600/v1>.
| Version: | 2.1.0 |
|---|---|
| Depends: | R (≥ 3.5.0) |
| Imports: | dplyr, magrittr, rlang, ggplot2, patchwork, purrr, recipes, rsample, tibble, tidyr, tidyselect, tune, workflows, yardstick, flashlight, future.apply, MetricsWeighted, finetune, hstats |
| Suggests: | knitr, rmarkdown, testthat (≥ 3.0.0), ape, vegan, hardhat, ggrepel, themis, MRFcov, lme4, randomForest, ggnetwork, igraph, tidymodels, tidyverse, parsnip, gridExtra, future, generics, missForest, kernelshap, shapviz |
| Published: | 2025-07-28 |
| DOI: | 10.32614/CRAN.package.mrIML |
| Author: | Nick Fountain-Jones |
| Maintainer: | Nick Fountain-Jones <nick.fountainjones at utas.edu.au> |
| BugReports: | https://github.com/nickfountainjones/mrIML/issues |
| License: | MIT + file |
| URL: | https://github.com/nickfountainjones/mrIML |
| NeedsCompilation: | no |
| Materials: | README, NEWS |
| CRAN checks: | mrIML results |
Documentation:
Downloads:
Linking:
Please use the canonical formhttps://CRAN.R-project.org/package=mrIMLto link to this page.