doi:10.1007/s41060-020-00226-0>.">

mrregression: Regression Analysis for Very Large Data Sets via Merge and Reduce (original) (raw)

Frequentist and Bayesian linear regression for large data sets. Useful when the data does not fit into memory (for both frequentist and Bayesian regression), to make running time manageable (mainly for Bayesian regression), and to reduce the total running time because of reduced or less severe memory-spillover into the virtual memory. This is an implementation of Merge & Reduce for linear regression as described in Geppert, L.N., Ickstadt, K., Munteanu, A., & Sohler, C. (2020). 'Streaming statistical models via Merge & Reduce'. International Journal of Data Science and Analytics, 1-17, <doi:10.1007/s41060-020-00226-0>.

Version: 1.0.0
Depends: R (≥ 4.0.0), Rcpp (≥ 1.0.5)
Imports: data.table (≥ 1.12.8)
Suggests: testthat (≥ 2.3.2)
Enhances: rstan (≥ 2.19.3)
Published: 2020-09-22
DOI: 10.32614/CRAN.package.mrregression
Author: Esther Denecke [aut], Leo N. Geppert [aut, cre], Steffen Maletz [ctb], R Core Team [ctb]
Maintainer: Leo N. Geppert
License: GPL-2 | GPL-3
NeedsCompilation: no
CRAN checks: mrregression results

Documentation:

Downloads:

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=mrregressionto link to this page.