doi:10.1037/met0000750>, Le, Dumuid, Stanford, and Wiley (2025) <doi:10.1080/00273171.2025.2565598>.">

multilevelcoda: Estimate Bayesian Multilevel Models for Compositional Data (original) (raw)

Implement Bayesian multilevel modelling for compositional data. Compute multilevel compositional data and perform log-ratio transforms at between and within-person levels, fit Bayesian multilevel models for compositional predictors and outcomes, and run post-hoc analyses such as isotemporal substitution models. References: Le, Stanford, Dumuid, and Wiley (2025) <doi:10.1037/met0000750>, Le, Dumuid, Stanford, and Wiley (2025) <doi:10.1080/00273171.2025.2565598>.

Version: 1.3.3
Depends: R (≥ 4.0.0)
Imports: stats, data.table (≥ 1.12.0), compositions, brms, extraoperators, ggplot2, foreach, future, doFuture, abind, graphics, shiny, shinystan, loo, bayesplot, emmeans, plotly, htmltools, bslib, DT, fs
Suggests: testthat (≥ 3.0.0), covr, withr, knitr, rmarkdown, lme4, cmdstanr (≥ 0.5.0)
Published: 2025-11-11
DOI: 10.32614/CRAN.package.multilevelcoda
Author: Flora Le ORCID iD [aut, cre], Joshua F. Wiley ORCID iD [aut]
Maintainer: Flora Le
BugReports: https://github.com/florale/multilevelcoda/issues
License: GPL (≥ 3)
URL: https://florale.github.io/multilevelcoda/,https://github.com/florale/multilevelcoda
NeedsCompilation: no
Additional_repositories: https://mc-stan.org/r-packages/
Citation: multilevelcoda citation info
Materials: README, NEWS
In views: CompositionalData
CRAN checks: multilevelcoda results

Documentation:

Downloads:

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=multilevelcodato link to this page.