naivebayes: High Performance Implementation of the Naive Bayes Algorithm (original) (raw)

In this implementation of the Naive Bayes classifier following class conditional distributions are available: 'Bernoulli', 'Categorical', 'Gaussian', 'Poisson', 'Multinomial' and non-parametric representation of the class conditional density estimated via Kernel Density Estimation. Implemented classifiers handle missing data and can take advantage of sparse data.

Version: 1.0.0
Suggests: knitr, Matrix
Published: 2024-03-16
DOI: 10.32614/CRAN.package.naivebayes
Author: Michal Majka ORCID iD [aut, cre]
Maintainer: Michal Majka
BugReports: https://github.com/majkamichal/naivebayes/issues
License: GPL-2
URL: https://github.com/majkamichal/naivebayes,https://majkamichal.github.io/naivebayes/
NeedsCompilation: no
Citation: naivebayes citation info
Materials: NEWS
In views: MachineLearning, MissingData
CRAN checks: naivebayes results

Documentation:

Reference manual: naivebayes.pdf
Vignettes: An Introduction to Naivebayes

Downloads:

Package source: naivebayes_1.0.0.tar.gz
Windows binaries: r-devel: naivebayes_1.0.0.zip, r-release: naivebayes_1.0.0.zip, r-oldrel: naivebayes_1.0.0.zip
macOS binaries: r-release (arm64): naivebayes_1.0.0.tgz, r-oldrel (arm64): naivebayes_1.0.0.tgz, r-release (x86_64): naivebayes_1.0.0.tgz, r-oldrel (x86_64): naivebayes_1.0.0.tgz
Old sources: naivebayes archive

Reverse dependencies:

Reverse imports: AnimalSequences, MLFS, ModTools, nproc, PrInCE, promor
Reverse suggests: discrim, FRESA.CAD, quanteda.textmodels, superml

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=naivebayesto link to this page.