nprobust: Nonparametric Robust Estimation and Inference Methods using Local Polynomial Regression and Kernel Density Estimation (original) (raw)
Tools for data-driven statistical analysis using local polynomial regression and kernel density estimation methods as described in Calonico, Cattaneo and Farrell (2018, <doi:10.1080/01621459.2017.1285776>): 'lprobust()' for local polynomial point estimation and robust bias-corrected inference, 'lpbwselect()' for local polynomial bandwidth selection, 'kdrobust()' for kernel density point estimation and robust bias-corrected inference, 'kdbwselect()' for kernel density bandwidth selection, and 'nprobust.plot()' for plotting results. The main methodological and numerical features of this package are described in Calonico, Cattaneo and Farrell (2019, <doi:10.18637/jss.v091.i08>).
| Version: | 0.5.0 |
|---|---|
| Depends: | R (≥ 3.1.1) |
| Imports: | Rcpp, ggplot2 |
| LinkingTo: | Rcpp, RcppArmadillo |
| Published: | 2025-04-14 |
| DOI: | 10.32614/CRAN.package.nprobust |
| Author: | Sebastian Calonico [aut, cre], Matias D. Cattaneo [aut], Max H. Farrell [aut] |
| Maintainer: | Sebastian Calonico |
| License: | GPL-2 |
| NeedsCompilation: | yes |
| Citation: | nprobust citation info |
| CRAN checks: | nprobust results |
Documentation:
Downloads:
Reverse dependencies:
Linking:
Please use the canonical formhttps://CRAN.R-project.org/package=nprobustto link to this page.