predieval: Assessing Performance of Prediction Models for Predicting Patient-Level Treatment Benefit (original) (raw)

Methods for assessing the performance of a prediction model with respect to identifying patient-level treatment benefit. All methods are applicable for continuous and binary outcomes, and for any type of statistical or machine-learning prediction model as long as it uses baseline covariates to predict outcomes under treatment and control.

Version: 0.1.1
Depends: R (≥ 4.1)
Imports: stats, Hmisc (≥ 4.6-0), ggplot2 (≥ 3.3.5), MASS (≥ 7.3), Matching (≥ 4.10-2)
Suggests: testthat (≥ 3.0.0)
Published: 2022-04-19
DOI: 10.32614/CRAN.package.predieval
Author: Orestis Efthimiou
Maintainer: Orestis Efthimiou
License: GPL-2 | GPL-3 [expanded from: GPL (≥ 2)]
URL: https://github.com/esm-ispm-unibe-ch/predieval
NeedsCompilation: no
Materials: NEWS
CRAN checks: predieval results

Documentation:

Downloads:

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=predievalto link to this page.