quantregForest: Quantile Regression Forests (original) (raw)

Quantile Regression Forests is a tree-based ensemble method for estimation of conditional quantiles. It is particularly well suited for high-dimensional data. Predictor variables of mixed classes can be handled. The package is dependent on the package 'randomForest', written by Andy Liaw.

Version: 1.3-7.1
Depends: randomForest, RColorBrewer
Imports: stats, parallel
Suggests: gss, knitr, rmarkdown
Published: 2024-10-07
DOI: 10.32614/CRAN.package.quantregForest
Author: Nicolai Meinshausen [aut], Loris Michel [cre]
Maintainer: Loris Michel
BugReports: https://github.com/lorismichel/quantregForest/issues
License: GPL-2 | GPL-3 [expanded from: GPL]
URL: https://github.com/lorismichel/quantregForest
NeedsCompilation: yes
In views: MachineLearning
CRAN checks: quantregForest results

Documentation:

Downloads:

Reverse dependencies:

Reverse imports: CondIndTests, ConformalSmallest, curvir, geomod
Reverse suggests: flowml, marginaleffects, ModelMap, probably, soilassessment, tidyfit, trtf, vetiver

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=quantregForestto link to this page.