doi:10.21105/joss.04251>). In particular, this package supports deterministic conditional mean imputation and jackknifing as described in Wolbers et al. (2022) <doi:10.1002/pst.2234>, Bayesian multiple imputation as described in Carpenter et al. (2013) <doi:10.1080/10543406.2013.834911>, and bootstrapped maximum likelihood imputation as described in von Hippel and Bartlett (2021) <doi:10.1214/20-STS793>.">

rbmi: Reference Based Multiple Imputation (original) (raw)

Implements standard and reference based multiple imputation methods for continuous longitudinal endpoints (Gower-Page et al. (2022) <doi:10.21105/joss.04251>). In particular, this package supports deterministic conditional mean imputation and jackknifing as described in Wolbers et al. (2022) <doi:10.1002/pst.2234>, Bayesian multiple imputation as described in Carpenter et al. (2013) <doi:10.1080/10543406.2013.834911>, and bootstrapped maximum likelihood imputation as described in von Hippel and Bartlett (2021) <doi:10.1214/20-STS793>.

Version:

1.5.2

Depends:

R (≥ 3.4.0)

Imports:

mmrm, pkgload, Matrix, tools, methods, R6, assertthat, jinjar, fs, stringr

Suggests:

dplyr, tidyr, nlme, testthat, emmeans, tibble, mvtnorm, knitr, rmarkdown, bookdown, lubridate, purrr, ggplot2, rstan (≥ 2.26.0), R.rsp, withr

Published:

2025-10-28

DOI:

10.32614/CRAN.package.rbmi

Author:

Craig Gower-Page [aut, cre], Isaac Gravestock [aut], Alessandro Noci [aut], Marcel Wolbers [ctb], Daniel Sabanes Bove [aut], F. Hoffmann-La Roche AG [cph, fnd]

Maintainer:

Craig Gower-Page <craig.gower-page at novartis.com>

BugReports:

https://github.com/insightsengineering/rbmi/issues

License:

Apache License (≥ 2)

URL:

https://insightsengineering.github.io/rbmi/,https://github.com/insightsengineering/rbmi

NeedsCompilation:

no

Citation:

rbmi citation info

Materials:

README, NEWS

In views:

ClinicalTrials

CRAN checks:

rbmi results