sGMRFmix: Sparse Gaussian Markov Random Field Mixtures for Anomaly Detection (original) (raw)
An implementation of sparse Gaussian Markov random field mixtures presented by Ide et al. (2016) <doi:10.1109/ICDM.2016.0119>. It provides a novel anomaly detection method for multivariate noisy sensor data. It can automatically handle multiple operational modes. And it can also compute variable-wise anomaly scores.
Version: | 0.3.0 |
---|---|
Imports: | ggplot2, glasso, mvtnorm, stats, tidyr, utils, zoo |
Suggests: | dplyr, ModelMetrics, testthat, covr, knitr, rmarkdown |
Published: | 2018-04-16 |
DOI: | 10.32614/CRAN.package.sGMRFmix |
Author: | Koji Makiyama [cre, aut] |
Maintainer: | Koji Makiyama <hoxo.smile at gmail.com> |
License: | MIT + file |
NeedsCompilation: | no |
Materials: | NEWS |
CRAN checks: | sGMRFmix results |
Documentation:
Downloads:
Linking:
Please use the canonical formhttps://CRAN.R-project.org/package=sGMRFmixto link to this page.