doi:10.1177/0022243720952410> "Scalable Target Marketing: Distributed Markov Chain Monte Carlo for Bayesian Hierarchical Models". Journal of Marketing Research, 57(6), 999-1018.">

scalablebayesm: Distributed Markov Chain Monte Carlo for Bayesian Inference in Marketing (original) (raw)

Estimates unit-level and population-level parameters from a hierarchical model in marketing applications. The package includes: Hierarchical Linear Models with a mixture of normals prior and covariates, Hierarchical Multinomial Logits with a mixture of normals prior and covariates, Hierarchical Multinomial Logits with a Dirichlet Process prior and covariates. For more details, see Bumbaca, F. (Rico), Misra, S., & Rossi, P. E. (2020) <doi:10.1177/0022243720952410> "Scalable Target Marketing: Distributed Markov Chain Monte Carlo for Bayesian Hierarchical Models". Journal of Marketing Research, 57(6), 999-1018.

Version: 0.2
Imports: Rcpp (≥ 1.0.9), parallel, bayesm
LinkingTo: Rcpp, RcppArmadillo, bayesm
Published: 2025-02-25
DOI: 10.32614/CRAN.package.scalablebayesm
Author: Federico Bumbaca [aut, cre], Jackson Novak [aut]
Maintainer: Federico Bumbaca <federico.bumbaca at colorado.edu>
License: GPL-2 | GPL-3 [expanded from: GPL (≥ 2)]
NeedsCompilation: yes
CRAN checks: scalablebayesm results

Documentation:

Downloads:

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=scalablebayesmto link to this page.