doi:10.18637/jss.v099.i02>.">

sentometrics: An Integrated Framework for Textual Sentiment Time Series Aggregation and Prediction (original) (raw)

Optimized prediction based on textual sentiment, accounting for the intrinsic challenge that sentiment can be computed and pooled across texts and time in various ways. See Ardia et al. (2021) <doi:10.18637/jss.v099.i02>.

Version: 1.0.1
Depends: R (≥ 3.3.0)
Imports: caret, compiler, data.table, foreach, ggplot2, glmnet, ISOweek, quanteda, Rcpp (≥ 0.12.13), RcppRoll, RcppParallel, stats, stringi, utils
LinkingTo: Rcpp, RcppArmadillo, RcppParallel
Suggests: covr, doParallel, e1071, lexicon, MCS, NLP, parallel, randomForest, stopwords, testthat, tm
Published: 2025-04-03
DOI: 10.32614/CRAN.package.sentometrics
Author: Samuel Borms ORCID iD [aut, cre], David Ardia ORCID iD [aut], Keven Bluteau ORCID iD [aut], Kris Boudt ORCID iD [aut], Jeroen Van Pelt [ctb], Andres Algaba [ctb]
Maintainer: Samuel Borms <borms_sam at hotmail.com>
BugReports: https://github.com/SentometricsResearch/sentometrics/issues
License: GPL-2 | GPL-3 [expanded from: GPL (≥ 2)]
URL: https://sentometrics-research.com/sentometrics/
NeedsCompilation: yes
SystemRequirements: GNU make
Citation: sentometrics citation info
Materials: README, NEWS
In views: NaturalLanguageProcessing
CRAN checks: sentometrics results

Documentation:

Downloads:

Reverse dependencies:

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=sentometricsto link to this page.