skipTrack: A Bayesian Hierarchical Model that Controls for Non-Adherence in Mobile Menstrual Cycle Tracking (original) (raw)
Implements a Bayesian hierarchical model designed to identify skips in mobile menstrual cycle self-tracking on mobile apps. Future developments will allow for the inclusion of covariates affecting cycle mean and regularity, as well as extra information regarding tracking non-adherence. Main methods to be outlined in a forthcoming paper, with alternative models from Li et al. (2022) <doi:10.1093/jamia/ocab182>.
| Version: | 0.2.0 |
|---|---|
| Imports: | doParallel (≥ 1.0.0), foreach (≥ 1.5.0), genMCMCDiag (≥ 0.2.0), ggplot2 (≥ 3.4.0), ggtext (≥ 0.1.0), glmnet (≥ 4.1.0), gridExtra (≥ 2.0), LaplacesDemon (≥ 16.0.0), lifecycle, mvtnorm (≥ 1.2.0), optimg (≥ 0.1.2), parallel (≥ 4.0.0), stats (≥ 4.0.0), utils (≥ 4.0.0) |
| Suggests: | knitr, rmarkdown, testthat (≥ 3.0.0) |
| Published: | 2025-09-10 |
| DOI: | 10.32614/CRAN.package.skipTrack |
| Author: | Luke Duttweiler |
| Maintainer: | Luke Duttweiler |
| BugReports: | https://github.com/LukeDuttweiler/skipTrack/issues |
| License: | MIT + file |
| URL: | https://github.com/LukeDuttweiler/skipTrack |
| NeedsCompilation: | no |
| Materials: | README, NEWS |
| CRAN checks: | skipTrack results |
Documentation:
Downloads:
Linking:
Please use the canonical formhttps://CRAN.R-project.org/package=skipTrackto link to this page.