doi:10.1108/S0731-9053(2013)0000031008>). Also, realized covariances can be constructed from stock market prices or returns, as explained in Andersen et al. (2001, <doi:10.1016/S0304-405X(01)00055-1>).">

starvars: Vector Logistic Smooth Transition Models Estimation and Prediction (original) (raw)

Allows the user to estimate a vector logistic smooth transition autoregressive model via maximum log-likelihood or nonlinear least squares. It further permits to test for linearity in the multivariate framework against a vector logistic smooth transition autoregressive model with a single transition variable. The estimation method is discussed in Terasvirta and Yang (2014, <doi:10.1108/S0731-9053(2013)0000031008>). Also, realized covariances can be constructed from stock market prices or returns, as explained in Andersen et al. (2001, <doi:10.1016/S0304-405X(01)00055-1>).

Version: 1.1.10
Depends: R (≥ 4.0)
Imports: MASS, ks, zoo, doSNOW, foreach, methods, matrixcalc, optimParallel, parallel, vars, xts, lessR, quantmod
Published: 2022-01-17
DOI: 10.32614/CRAN.package.starvars
Author: Andrea Bucci [aut, cre, cph], Giulio Palomba [aut], Eduardo Rossi [aut], Andrea Faragalli [ctb]
Maintainer: Andrea Bucci <andrea.bucci at unich.it>
License: GPL-2 | GPL-3 [expanded from: GPL]
URL: https://github.com/andbucci/starvars
NeedsCompilation: no
Materials: README
CRAN checks: starvars results

Documentation:

Downloads:

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=starvarsto link to this page.