surveil: Time Series Models for Disease Surveillance (original) (raw)
Fits time trend models for routine disease surveillance tasks and returns probability distributions for a variety of quantities of interest, including age-standardized rates, period and cumulative percent change, and measures of health inequality. The models are appropriate for count data such as disease incidence and mortality data, employing a Poisson or binomial likelihood and the first-difference (random-walk) prior for unknown risk. Optionally add a covariance matrix for multiple, correlated time series models. Inference is completed using Markov chain Monte Carlo via the Stan modeling language. References: Donegan, Hughes, and Lee (2022) <doi:10.2196/34589>; Stan Development Team (2021) <https://mc-stan.org>; Theil (1972, ISBN:0-444-10378-3).
Version: | 0.3.0 |
---|---|
Depends: | R (≥ 3.5.0) |
Imports: | rstantools (≥ 2.1.1), methods, Rcpp (≥ 0.12.0), RcppParallel (≥ 5.0.1), rstan (≥ 2.26.0), tidybayes (≥ 3.0.0), dplyr (≥ 1.0.7), rlang (≥ 0.4.0), tidyr (≥ 1.1.0), ggplot2 (≥ 3.0.0), gridExtra (≥ 2.0), scales (≥ 0.4.0), ggdist (≥ 3.0.0) |
LinkingTo: | BH (≥ 1.66.0), Rcpp (≥ 0.12.0), RcppEigen (≥ 0.3.3.3.0), RcppParallel (≥ 5.0.1), rstan (≥ 2.26.0), StanHeaders (≥ 2.26.0) |
Suggests: | rmarkdown, knitr, testthat |
Published: | 2024-07-08 |
DOI: | 10.32614/CRAN.package.surveil |
Author: | Connor Donegan [aut, cre] |
Maintainer: | Connor Donegan <connor.donegan at gmail.com> |
License: | GPL (≥ 3) |
URL: | https://connordonegan.github.io/surveil/,https://github.com/ConnorDonegan/surveil/ |
NeedsCompilation: | yes |
SystemRequirements: | GNU make |
Citation: | surveil citation info |
Materials: | README NEWS |
CRAN checks: | surveil results |
Documentation:
Downloads:
Linking:
Please use the canonical formhttps://CRAN.R-project.org/package=surveilto link to this page.