doi:10.1214/21-BA1266> and Goplerud (2024) <doi:10.1017/S0003055423000035> provide details on the variational algorithms.">

vglmer: Variational Inference for Hierarchical Generalized Linear Models (original) (raw)

Estimates hierarchical models using variational inference. At present, it can estimate logistic, linear, and negative binomial models. It can accommodate models with an arbitrary number of random effects and requires no integration to estimate. It also provides the ability to improve the quality of the approximation using marginal augmentation. Goplerud (2022) <doi:10.1214/21-BA1266> and Goplerud (2024) <doi:10.1017/S0003055423000035> provide details on the variational algorithms.

Version: 1.0.6
Depends: R (≥ 3.0.2)
Imports: Rcpp (≥ 1.0.1), lme4, CholWishart, mvtnorm, Matrix, stats, graphics, methods, lmtest, splines, mgcv
LinkingTo: Rcpp, RcppEigen (≥ 0.3.3.4.0)
Suggests: SuperLearner, MASS, tictoc, testthat, gKRLS
Published: 2024-11-07
DOI: 10.32614/CRAN.package.vglmer
Author: Max Goplerud [aut, cre]
Maintainer: Max Goplerud
BugReports: https://github.com/mgoplerud/vglmer/issues
License: GPL-2 | GPL-3 [expanded from: GPL (≥ 2)]
URL: https://github.com/mgoplerud/vglmer
NeedsCompilation: yes
Materials: README, NEWS
In views: Bayesian, MixedModels
CRAN checks: vglmer results

Documentation:

Downloads:

Reverse dependencies:

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=vglmerto link to this page.