Help for package vws (original) (raw)
| Type: | Package |
|---|---|
| Title: | Vertical Weighted Strips |
| Version: | 0.3.0 |
| Maintainer: | Andrew M. Raim andrew.raim@gmail.com |
| Description: | A reference implementation of the Vertical Weighted Strips method explored by Raim, Livsey, and Irimata (2025) <doi:10.48550/arXiv.2401.09696> for rejection sampling. |
| URL: | https://github.com/andrewraim/vws |
| License: | MIT + file LICENSE |
| Encoding: | UTF-8 |
| RoxygenNote: | 7.3.3 |
| Depends: | R (≥ 4.1.0) |
| Imports: | Rcpp, fntl |
| LinkingTo: | Rcpp, fntl |
| Suggests: | knitr, rmarkdown, quarto, statmod, tidyverse |
| VignetteBuilder: | quarto |
| NeedsCompilation: | yes |
| Packaged: | 2025-11-06 15:34:48 UTC; araim |
| Author: | Andrew M. Raim [aut, cre] |
| Repository: | CRAN |
| Date/Publication: | 2025-11-11 21:20:02 UTC |
Description
Package documentation
Author(s)
Maintainer: Andrew M. Raim andrew.raim@gmail.com
See Also
Useful links:
Categorical Distribution
Description
Draw variates from a categorical distribution.
Usage
r_categ(n, p, log = FALSE, one_based = FALSE)
Arguments
| n | Number of desired draws. |
|---|---|
| p | Vector of k probabilities for distribution. |
| log | logical; if TRUE, interpret p as being specified on the log-scale as log(p). Otherwise, interpret p as being specified on the original probability scale. |
| one_based | logical; if TRUE, assume a categorical distribution with support \{ 1, \ldots, k \}. Otherwise, assume support\{ 0, \ldots, k - 1 \}. |
Value
A vector of n draws.
Examples
p = c(0.1, 0.2, 0.3, 0.4)
lp = log(p)
set.seed(1234)
r_categ(50, p, log = FALSE, one_based = FALSE)
r_categ(50, p, log = FALSE, one_based = TRUE)
set.seed(1234)
r_categ(50, lp, log = TRUE, one_based = FALSE)
r_categ(50, lp, log = TRUE, one_based = TRUE)
Gumbel Distribution
Description
Functions for the Gumbel distribution with density
f(x \mid \mu, \sigma) = \frac{1}{\sigma} \exp\{ -\{ (x - \mu) / \sigma + e^{-(x - \mu) / \sigma} \} \}
Usage
r_gumbel(n, mu = 0, sigma = 1)
d_gumbel(x, mu = 0, sigma = 1, log = FALSE)
p_gumbel(q, mu = 0, sigma = 1, lower = TRUE, log = FALSE)
q_gumbel(p, mu = 0, sigma = 1, lower = TRUE, log = FALSE)
Arguments
| n | Number of draws. |
|---|---|
| mu | Location parameter. |
| sigma | Scale parameter. |
| x | Vector; argument of density. |
| log | Logical; if TRUE, probabilities p are given as\log(p). |
| q | Vector; argument of quantile function. |
| lower | Logical; if TRUE (default), probabilities areP[X \leq x] otherwise, P[X > x]. |
| p | Vector; argument of cumulative distribution function. |
Value
d_gumbel computes the density, r_gumbel generates random deviates,p_gumbel computes the CDF, and q_gumbel computes quantiles. A vector is returned by each.
Examples
mu = 1
sigma = 2
x = r_gumbel(100000, mu, sigma)
xx = seq(min(x), max(x), length.out = 100)
plot(density(x))
lines(xx, d_gumbel(xx, mu, sigma), lty = 2, col = "blue", lwd = 2)
plot(ecdf(x))
lines(xx, p_gumbel(xx, mu, sigma), lty = 2, col = "blue", lwd = 2)
pp = seq(0, 1, length.out = 102) |> head(-1) |> tail(-1)
qq = quantile(x, probs = pp)
plot(pp, qq)
lines(pp, q_gumbel(pp, mu, sigma), lty = 2, col = "blue", lwd = 2)
Printing
Description
Functions to print messages using an sprintf syntax.
Usage
printf(fmt, ...)
logger(fmt, ..., dt_fmt = "%Y-%m-%d %H:%M:%S", join = " - ")
fprintf(file, fmt, ...)
Arguments
| fmt | Format string which can be processed by sprintf |
|---|---|
| ... | Additional arguments |
| dt_fmt | Format string which can be processed by format.POSIXct |
| join | A string to place between the timestamp and the message. |
| file | A connection, or a character string naming the file to print to |
Value
None (invisible NULL); functions are called for side effects.
Examples
printf("Hello world %f %d\n", 0.1, 5)
logger("Hello world\n")
logger("Hello world %f %d\n", 0.1, 5)
logger("Hello world %f %d\n", 0.1, 5, dt_fmt = "%H:%M:%S")
logger("Hello world %f %d\n", 0.1, 5, join = " >> ")
logger("Hello world %f %d\n", 0.1, 5, join = " ")
Log-Sum-Exp
Description
Compute arithmetic on the log-scale in a more stable way than directly taking logarithm and exponentiating.
Usage
log_sum_exp(x)
log_add2_exp(x, y)
log_sub2_exp(x, y)
Arguments
| x | A numeric vector. |
|---|---|
| y | A numeric vector; it should have the same length as x. |
Details
The function log_sum_exp computes log(sum(exp(x))) using the method in StackExchange post https://stats.stackexchange.com/a/381937.
The functions log_add2_exp and log_sub2_exp computelog(exp(x) + exp(y)) and log(exp(x) - exp(y)), respectively. The function log_sub2_exp expects that each element of x is larger than or equal to its corresponding element in y. Otherwise,NaN will be returned with a warning.
Value
log_add2_exp and log_sub2_exp return a vector of pointwise results whose ith element is the result based on x[i] and y[i].log_sum_exp returns a single scalar.
Examples
pi = 1:6 / sum(1:6)
x = log(2*pi)
log(sum(exp(x)))
log_sum_exp(x)
# Result should be 0
x = c(-Inf -Inf, 0)
log_sum_exp(x)
# Result should be -Inf
x = c(-Inf -Inf, -Inf)
log_sum_exp(x)
# Result should be Inf
x = c(-Inf -Inf, Inf)
log_sum_exp(x)
# Result should be 5 on the original scale
out = log_add2_exp(log(3), log(2))
exp(out)
# Result should be 7 on the original scale
out = log_sub2_exp(log(12), log(5))
exp(out)
Hybrid Univariate Optimization
Description
Use Brent's method if a bounded search interval is specified. Otherwise use BFGS method.
Usage
optimize_hybrid(f, init, lower, upper, maximize = FALSE, maxiter = 10000L)
Arguments
| f | Objective function. Should take a scalar as an argument. |
|---|---|
| init | Initial value for optimization variable. |
| lower | Lower bound for search; may be -\infty. |
| upper | Upper bound for search; may be +\infty. |
| maximize | logical; if TRUE, optimization will be a maximization. Otherwise, it will be a minimization. |
| maxiter | Maximum number of iterations. |
Value
A list with the following elements.
| par | Value of optimization variable. |
|---|---|
| value | Value of optimization function. |
| method | Description of result. |
| status | Status code from BFGS or 0 otherwise. |
Examples
f = function(x) { x^2 }
optimize_hybrid(f, init = 0, lower = -1, upper = 2, maximize = FALSE)
optimize_hybrid(f, init = 0, lower = -1, upper = Inf, maximize = FALSE)
optimize_hybrid(f, init = 0, lower = -Inf, upper = 1, maximize = FALSE)
optimize_hybrid(f, init = 0, lower = 0, upper = Inf, maximize = FALSE)
optimize_hybrid(f, init = 0, lower = -Inf, upper = 0, maximize = FALSE)
f = function(x) { 1 - x^2 }
optimize_hybrid(f, init = 0, lower = -1, upper = 1, maximize = TRUE)
optimize_hybrid(f, init = 0, lower = -1, upper = 0, maximize = TRUE)
optimize_hybrid(f, init = 0, lower = 0, upper = 1, maximize = TRUE)
Rectangular transformation
Description
A transformation from unconstrained \mathbb{R}^d to a rectangle in\mathbb{R}^d, and its inverse transformation.
Usage
rect(z, a, b)
inv_rect(x, a, b)
Arguments
| z | A point in the rectangle [a_1,b_1] \times \cdots \times [a_d,b_d]. |
|---|---|
| a | A vector (a_1, \ldots, a_d), Elements may be -Inf. |
| b | A vector (b_1, \ldots, b_d), Elements may be +Inf. |
| x | A point in \mathbb{R}^{d}. |
Value
A vector of length d.
Examples
n = 20
x = seq(-5, 5, length.out = n)
# Transform x to the interval [-1, 1]
a = rep(-1, n)
b = rep(+1, n)
z = inv_rect(x, a, b)
print(z)
xx = rect(z, a, b)
stopifnot(all(abs(x - xx) < 1e-8))
# Transform x to the interval [-Inf, 1]
a = rep(-Inf, n)
b = rep(+1, n)
z = inv_rect(x, a, b)
print(z)
xx = rect(z, a, b)
stopifnot(all(abs(x - xx) < 1e-8))
# Transform x to the interval [-1, Inf]
a = rep(-1, n)
b = rep(+Inf, n)
z = inv_rect(x, a, b)
print(z)
xx = rect(z, a, b)
stopifnot(all(abs(x - xx) < 1e-8))
# Transform x to the interval [-Inf, Inf]
a = rep(-Inf, n)
b = rep(+Inf, n)
z = inv_rect(x, a, b)
print(z)
xx = rect(z, a, b)
stopifnot(all(abs(x - xx) < 1e-8))
Produce a sequence of knots
Description
Produce knots which define N equally-spaced intervals between (finite) endpoints lo and hi.
Usage
seq_knots(lo, hi, N, endpoints = FALSE)
Arguments
| lo | Left endpoint; must be finite. |
|---|---|
| hi | Right endpoint; must be finite. |
| N | Number of desired intervals. |
| endpoints | logical; if TRUE, include the endpoints. |
Value
A vector that represents a sequence of knots. If endpoints = TRUE, it contains N+1 evenly-spaced knots that represent N regions with endpoints included. If endpoints = FALSE, the endpoints are excluded.
Examples
seq_knots(0, 1, N = 5)
seq_knots(0, 1, N = 5, endpoints = TRUE)
# Trivial case: make endpoints for just one interval
seq_knots(0, 1, N = 1)
seq_knots(0, 1, N = 1, endpoints = TRUE)
# The following calls throw errors
tryCatch({
seq_knots(0, 1, N = 0)
}, error = function(e) { print(e) })
tryCatch({
seq_knots(0, Inf, N = 5)
}, error = function(e) { print(e) })
tryCatch({
seq_knots(-Inf, 1, N = 5)
}, error = function(e) { print(e) })