doi:10.1016/j.ipl.2005.11.003> and Wong and Easton (1980) <doi:10.1137/0209009>.">

wrswoR: Weighted Random Sampling without Replacement (original) (raw)

A collection of implementations of classical and novel algorithms for weighted sampling without replacement. Implementations include the algorithm of Efraimidis and Spirakis (2006) <doi:10.1016/j.ipl.2005.11.003> and Wong and Easton (1980) <doi:10.1137/0209009>.

Version: 1.2.0
Depends: R (≥ 3.5.0)
Imports: logging (≥ 0.4-13), Rcpp
LinkingTo: Rcpp (≥ 0.11.5)
Suggests: BatchExperiments, BiocManager, dplyr, ggplot2, import, kimisc (≥ 0.2-4), knitcitations, knitr, metap, microbenchmark, rmarkdown, roxygen2, rticles (≥ 0.1), sampling, testthat (≥ 3.0.0), tidyr, tikzDevice (≥ 0.9-1)
Published: 2025-11-10
DOI: 10.32614/CRAN.package.wrswoR
Author: Kirill Müller ORCID iD [aut, cre]
Maintainer: Kirill Müller
BugReports: https://github.com/krlmlr/wrswoR/issues
License: GPL-3
URL: http://krlmlr.github.io/wrswoR/
NeedsCompilation: yes
Materials: README, NEWS
CRAN checks: wrswoR results

Documentation:

Downloads:

Reverse dependencies:

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=wrswoRto link to this page.