Площадь (геометрия) | это... Что такое Площадь (геометрия)? (original) (raw)

Площадь (геометрия)

Площадь (геометрия)

Пло́щадь фигуры — числовая характеристика фигуры. В простейшем случае, когда фигуру можно разбить на конечное множество единичных квадратов, площадь равна числу квадратов.

Содержание

Об определении

Формальное введение понятия площадь и объём можно найти в статье мера Жордана, здесь мы приводим лишь намётки определения с комментариями.

Площадь — это вещественнозначная функция, определённая на определённом классе фигур евклидовой плоскости, такая что:

  1. (положительность) площадь неотрицательна;
  2. (нормировка) квадрат со стороной единица имеет площадь 1;
  3. конгруэнтные фигуры имеют равную площадь;
  4. (аддитивность) площадь объединения двух фигур без общих внутренних точек равна сумме площадей.

Определённый класс должен быть замкнут относительно пересечения и объединения, а также относительно движений плоскости и включать в себя все многоугольники. Из этих аксиом следует монотонность площади, то есть

Чаще всего за «определённый класс» берут множество квадрируемых фигур. Фигура F называется квадрируемой, если для любого \varepsilon>0 существует пара многоугольников P и Q, такие что P\subset F\subset Q и S(Q)-S(P)<\varepsilon, где S(P) обозначает площадь P.

Связанные определения

Комментарии

На самом деле, есть довольно неестественный и неоднозначный способ определить площадь для всех ограниченных подмножеств плоскости. На множестве всех ограниченных подмножеств плоскости существуют различные функции площади, т. е. не равные функции, удовлетворяющие вышеприведённым аксиомам, а множество квадрируемых фигур является максимальным множеством фигур на которых функционал площади определяется однозначно.

То же самое можно сделать для длины на прямой, но нельзя для объёма в евклидовом пространстве и также нельзя для площади на единичной сфере в евклидовом пространстве, (смотри соответственно парадокс Банаха — Тарского и парадокс Хаусдорфа).

Площади некоторых фигур

Площадь прямоугольника со сторонами а и b равна произведению их сторон: S = ab.

Площадь произвольного четырехугольника равна половине произведения диагоналей и синуса угла между ними.

Площадь треугольника равна половине произведения основания, умноженного на высоту.

См. также

Ссылки

Wikimedia Foundation.2010.

Полезное

Смотреть что такое "Площадь (геометрия)" в других словарях: