Модуль упругости | это... Что такое Модуль упругости? (original) (raw)

Модуль упругости — общее название нескольких физических величин, характеризующих способность твёрдого тела (материала, вещества) упруго деформироваться (то есть не постоянно) при приложении к нему силы. В области упругой деформации модуль упругости тела определяется производной (градиентом) зависимости напряжения от деформации, то есть тангенсом угла наклона диаграммы напряжений-деформаций:

\lambda \ \stackrel{\text{def}}{=}\  \frac{p}{\varepsilon}

где λ (лямбда) — модуль упругости; p — напряжение, вызываемое в образце действующей силой (равно силе, делённой на площадь приложения силы); \varepsilonупругая деформация образца, вызванная напряжением (равна отношению изменения размера образца после деформации к его первоначальному размеру). Если напряжение измеряется в паскалях, то, поскольку деформация является безразмерной величиной, единицей измерения λ также будет паскаль. Альтернативным определением является определение, что модуль упругости — это напряжение, достаточное для того, чтобы вызвать увеличение длины образца в два раза. Такое определение не является точным для большинства материалов, потому что это значение намного больше чем предел текучести материала или значения, при котором удлинение становится нелинейным, однако оно может оказаться более интуитивным.

Разнообразие способов, которыми могут быть изменены напряжения и деформации, включая различные направления действия силы, позволяют определить множество типов модулей упругости. Здесь даны три основных модуля:

Существуют и другие модули упругости: коэффициент Пуассона, параметры Ламе.

Гомогенные и изотропные материалы (твердые), обладающие линейными упругими свойствами, полностью описываются двумя модулями упругости, представляющими собой пару любых модулей. Если дана пара модулей упругости, все другие модули могут быть получены по формулам, представленным в таблице ниже.

В невязких течениях не существует сдвигового напряжения, поэтому сдвиговый модуль всегда равен нулю. Это влечёт также и равенство нулю модуля Юнга.

Формулы преобразования
Упругие свойства гомогенных изотропных линейно-упругих материалов уникально определяются любыми двумя модулями упругости. Таким образом, имея два модуля, остальные можно вычислить по следующим формулам:
(\lambda,\,G) (E,\,G) (K,\,\lambda) (K,\,G) (\lambda,\,\nu) (G,\,\nu) (E,\,\nu) (K,\, \nu) (K,\,E)
K=\, \lambda+ \frac{2G}{3} \frac{EG}{3(3G-E)} \lambda\frac{1+\nu}{3\nu} \frac{2G(1+\nu)}{3(1-2\nu)} \frac{E}{3(1-2\nu)}
E=\, G\frac{3\lambda + 2G}{\lambda + G} 9K\frac{K-\lambda}{3K-\lambda} \frac{9KG}{3K+G} \frac{\lambda(1+\nu)(1-2\nu)}{\nu} 2G(1+\nu)\, 3K(1-2\nu)\,
\lambda=\, G\frac{E-2G}{3G-E} K-\frac{2G}{3} \frac{2 G \nu}{1-2\nu} \frac{E\nu}{(1+\nu)(1-2\nu)} \frac{3K\nu}{1+\nu} \frac{3K(3K-E)}{9K-E}
G=\, 3\frac{K-\lambda}{2} \lambda\frac{1-2\nu}{2\nu} \frac{E}{2+2\nu} 3K\frac{1-2\nu}{2+2\nu} \frac{3KE}{9K-E}
\nu=\, \frac{\lambda}{2(\lambda + G)} \frac{E}{2G}-1 \frac{\lambda}{3K-\lambda} \frac{3K-2G}{2(3K+G)} \frac{3K-E}{6K}
M=\, \lambda+2G\, G\frac{4G-E}{3G-E} 3K-2\lambda\, K+\frac{4G}{3} \lambda \frac{1-\nu}{\nu} G\frac{2-2\nu}{1-2\nu} E\frac{1-\nu}{(1+\nu)(1-2\nu)} 3K\frac{1-\nu}{1+\nu} 3K\frac{3K+E}{9K-E}

Модули упругости (Е) для некоторых веществ:

Материал Е, МПа Е, кгс/см²
Алюминий 70000 713 800
Вода 2030 20300
Дерево 10000 102 000
Кость 30000 305 900
Медь 100000 1 020 000
Резина* 10 102
Сталь 200000 2 039 000
Стекло 70000 713 800

См. также

Ссылки

Литература

Модули упругости для гомогенных изотропных материалов
Модуль объёмной упругости (K) | Модуль Юнга (E) Параметры Ламе (\lambda) Модуль сдвига (G) Коэффициент Пуассона (\nu) en:P-wave modulus (M)