Рентгеновское излучение | это... Что такое Рентгеновское излучение? (original) (raw)

Электромагнитное излучение
Синхротронное
Циклотронное
Тормозное
Тепловое
Монохроматическое
Черенковское
Переходное
Радиоизлучение
Микроволновое
Терагерцевое
Инфракрасное
Видимое
Ультрафиолетовое
Рентгеновское
Гамма-излучение
Ионизирующее
Реликтовое
Магнито-дрейфовое
Двухфотонное
Спонтанное
Вынужденное

Рентге́новское излуче́ниеэлектромагнитные волны, энергия фотонов которых лежит на шкале электромагнитных волн между ультрафиолетовым излучением и гамма-излучением, что соответствует длинам волн от 10−2 до 103 Å (от 10−12 до 10−7 м).[1]

Содержание

Положение на шкале электромагнитных волн

Энергетические диапазоны рентгеновского излучения и гамма-излучения перекрываются в широкой области энергий. Оба типа излучения являются электромагнитным излучением и при одинаковой энергии фотонов — эквивалентны. Терминологическое различие лежит в способе возникновения — рентгеновские лучи испускаются при участии электронов (либо в атомах, либо свободных) в то время как гамма-излучение испускается в процессах девозбуждения атомных ядер. Фотоны рентгеновского излучения имеют энергию от 100 эВ до 250 кэВ, что соответствует излучению с частотой от 3·1016 до 6·1019 Гц и длиной волны 0,005—10 нм (общепризнанного определения нижней границы диапазона рентгеновских лучей в шкале длин волн не существует). Мягкий рентген характеризуется наименьшей энергией фотона и частотой излучения (и наибольшей длиной волны), а жёсткий рентген обладает наибольшей энергией фотона и частотой излучения (и наименьшей длиной волны). Жёсткий рентген используется преимущественно в промышленных целях.

Лабораторные источники

Рентгеновские трубки

Схематическое изображение рентгеновской трубки. X — рентгеновские лучи, K — катод, А — анод (иногда называемый антикатодом), С — теплоотвод, Uhнапряжение накала катода, Ua — ускоряющее напряжение, Win — впуск водяного охлаждения, Wout — выпуск водяного охлаждения.

Рентгеновские лучи возникают при сильном ускорении заряженных частиц (тормозное излучение), либо при высокоэнергетических переходах в электронных оболочках атомов или молекул. Оба эффекта используются в рентгеновских трубках. Основными конструктивными элементами таких трубок являются металлические катод и анод (ранее называвшийся также антикатодом). В рентгеновских трубках электроны, испущенные катодом, ускоряются под действием разности электрических потенциалов между анодом и катодом (при этом рентгеновские лучи не испускаются, так как ускорение слишком мало) и ударяются об анод, где происходит их резкое торможение. При этом за счёт тормозного излучения происходит генерация излучения рентгеновского диапазона, и одновременно выбиваются электроны из внутренних электронных оболочек атомов анода. Пустые места в оболочках занимаются другими электронами атома. При этом испускается рентгеновское излучение с характерным для материала анода спектром энергий (характеристическое излучение, частоты определяются законом Мозли: \sqrt \nu  = A(Z - B), где Zатомный номер элемента анода, A и B — константы для определённого значения главного квантового числа n электронной оболочки). В настоящее время аноды изготавливаются главным образом из керамики, причём та их часть, куда ударяют электроны, — из молибдена или меди.

Трубка Крукса

В процессе ускорения-торможения лишь около 1% кинетической энергии электрона идёт на рентгеновское излучение, 99% энергии превращается в тепло.

Ускорители частиц

Рентгеновское излучение можно получать также и на ускорителях заряженных частиц. Так называемое синхротронное излучение возникает при отклонении пучка частиц в магнитном поле, в результате чего они испытывают ускорение в направлении, перпендикулярном их движению. Синхротронное излучение имеет сплошной спектр с верхней границей. При соответствующим образом выбранных параметрах (величина магнитного поля и энергия частиц) в спектре синхротронного излучения можно получить и рентгеновские лучи.

Длины волн спектральных линий K-серий (нм) для ряда анодных материалов.[2],[3]

Kα₁ Kα₂ Kβ₁ Kβ₂
Fe 0,193735 0,193604 0,193998 0,17566 0,17442
Cu 0,154184 0,154056 0,154439 0,139222 0,138109
Ag 0,0560834 0,0559363 0,0563775
Cr 0,2291 0,22897 0,229361
Co 0,179026 0,178897 0,179285
Mo 0,071073 0,07093 0,071359
W 0,0210599 0,0208992 0,0213813
Zr 0,078593 0,079015 0,070173 0,068993
Ni 0,165791 0,166175 0,15001 0,14886

Взаимодействие с веществом

Длина волны рентгеновских лучей сравнима с размерами атомов, поэтому не существует материала, из которого можно было бы изготовить линзу для рентгеновских лучей. Кроме того, при перпендикулярном падении на поверхность рентгеновские лучи почти не отражаются. Несмотря на это, в рентгеновской оптике были найдены способы построения оптических элементов для рентгеновских лучей. В частности выяснилось, что их хорошо отражает алмаз[4].

Рентгеновские лучи могут проникать сквозь вещество, причём различные вещества по-разному их поглощают. Поглощение рентгеновских лучей является важнейшим их свойством в рентгеновской съёмке. Интенсивность рентгеновских лучей экспоненциально убывает в зависимости от пройденного пути в поглощающем слое (I = I_0_e-kd, где d — толщина слоя, коэффициент k пропорционален _Z_³λ³, Z — атомный номер элемента, λ — длина волны).

Поглощение происходит в результате фотопоглощения (фотоэффекта) и комптоновского рассеяния:

В дополнение к названным процессам существует ещё одна принципиальная возможность поглощения — за счёт возникновения электрон-позитронных пар. Однако для этого необходимы энергии более 1,022 МэВ, которые лежат вне вышеобозначенной границы рентгеновского излучения (<250 кэВ). Однако при другом подходе, когда «рентгеновским» называется излучение, возникшее при взаимодействии электрона и ядра или только электронов, такой процесс имеет место. Кроме того, очень жесткое рентгеновское излучение с энергией кванта более 1 МэВ, способно вызвать Ядерный фотоэффект.

Биологическое воздействие

Рентгеновское излучение является ионизирующим. Оно воздействует на ткани живых организмов и может быть причиной лучевой болезни, лучевых ожогов и злокачественных опухолей. По причине этого при работе с рентгеновским излучением необходимо соблюдать меры защиты. Считается, что поражение прямо пропорционально поглощённой дозе излучения. Рентгеновское излучение является мутагенным фактором.

Регистрация

Применение

Естественное рентгеновское излучение

На Земле электромагнитное излучение в рентгеновском диапазоне образуется в результате ионизации атомов излучением, которое возникает при радиоактивном распаде, в результате комптон-эффекта гамма-излучения, возникающего при ядерных реакциях, а также космическим излучением. Радиоактивный распад также приводит к непосредственному излучению рентгеновских квантов, если вызывает перестройку электронной оболочки распадающегося атома (например, при электронном захвате). Рентгеновское излучение, которое возникает на других небесных телах, не достигает поверхности Земли, так как полностью поглощается атмосферой. Оно исследуется спутниковыми рентгеновскими телескопами, такими как Чандра и XMM-Ньютон.

История открытия

Сделанная В. К. Рентгеном фотография (рентгенограмма) руки Альберта фон Кёликера

Рентгеновское излучение было открыто Вильгельмом Конрадом Рёнтгеном. Он был первым, кто опубликовал статью о рентгеновских лучах, которые он назвал X-лучами (x-ray). Статья Рентгена под названием «О новом типе лучей» была опубликована 28-го декабря 1895 года в журнале Вюрцбургского физико-медицинского общества.

Но еще за 8 лет до этого — в 1887 году Никола Тесла в дневниковых записях зафиксировал результаты исследования рентгеновских лучей[источник не указан 44 дня] и испускаемое ими тормозное излучение, однако ни Тесла, ни его окружение не придали серьёзное значение этим наблюдениям. Кроме этого, уже тогда Тесла предположил опасность длительного воздействия рентгеновских лучей на человеческий организм.

В некоторых[_каких?_] кругах, однако, утверждается[_кем?_], что рентгеновские лучи были уже получены до этого И. П. Пулюем[источник не указан 751 день]. Катодолучевая трубка, которую Рентген использовал в своих экспериментах, была разработана Й. Хитторфом и В. Круксом. При работе этой трубки возникают рентгеновские лучи. Это было показано в экспериментах Крукса[источник не указан 1313 дней] и с 1892 года в экспериментах Генриха Герца и его ученика Филиппа Ленарда через почернение фотопластинок. Однако никто из них не осознал значения сделанного ими открытия и не опубликовал своих результатов.

По этой причине Рентген не знал о сделанных до него открытиях и открыл лучи независимо — при наблюдении флюоресценции, возникающей при работе катодолучевой трубки. На некоторых языках (включая русский и немецкий) эти лучи были названы его именем, несмотря на его сильные возражения. Рентген занимался Х-лучами немногим более года (с 8 ноября 1895 года по март 1897 года) и опубликовал о них три статьи, в которых было исчерпывающее описание новых лучей, впоследствии сотни работ его последователей, опубликованных затем на протяжении 12 лет, не могли ни прибавить, ни изменить ничего существенного. Рентген, потерявший интерес к Х-лучам, говорил своим коллегам: «Я уже всё написал, не тратьте зря время». Свой вклад в известность Рентгена внесла также знаменитая фотография руки Альберта фон Кёликера, которую он опубликовал в своей статье (см. изображение справа). За открытие рентгеновских лучей Рентгену в 1901 году была присуждена первая Нобелевская премия по физике, причём нобелевский комитет подчёркивал практическую важность его открытия. В 1896 году, в России, впервые было употреблено название «рентгеновские лучи»[источник не указан 1313 дней]. В других странах используется предпочитаемое Рентгеном название — X-лучи, хотя словосочетания, аналогичные русскому, (англ. Roentgen rays и т.п.) также употребляются. В России лучи стали называть «рентгеновскими» по инициативе ученика В. К. Рентгена — Абрама Фёдоровича Иоффе.

Примечания

  1. Рентгеновское излучение — статья из Физической энциклопедии
  2. CRC Handbook of Chemistry and Physics 75th ed. David R. Lide P.10-227. CRC Press ISBN 0-8493-0475-X
  3. Crystallographica, v1.60a. Oxford Cryosystems 1995—1999.
  4. Юрий Ерин Подтверждена высокая отражательная способность алмаза в диапазоне жесткого рентгеновского излучения. Элементы — новости науки (03.03.2010). Архивировано из первоисточника 27 августа 2011. Проверено 11 мая 2010.

Ссылки

commons: X-ray на Викискладе?

См также

Просмотр этого шаблона Электромагнитный спектр
γ-излучение | рентген УФ видимый свет ИК терагерцевое излучение микроволны радиоволны
Видимый спектр фиолетовый | синий голубой зелёный жёлтый оранжевый красный
Микроволны W | V Q Ka K Ku X C S L
Радиоволны КВЧ/EHF | СВЧ/SHF УВЧ/UHF ОВЧ/VHF ВЧ/HF СЧ/MF НЧ/LF ОНЧ/VLF ИНЧ/ULF СНЧ/SLF КНЧ/ELF
Длины волн Ультракороткие волны | Короткие волны Средние волны Длинные волны