Интеграл Лебега | это... Что такое Интеграл Лебега? (original) (raw)
Сверху интегрирование по Риману, снизу по Лебегу
Интеграл Лебе́га — это обобщение интеграла Римана на более широкий класс функций. Все функции, определённые на конечном отрезке числовой прямой и интегрируемые по Риману, являются также интегрируемыми по Лебегу, причём в этом случае оба интеграла равны. Однако, существует большой класс функций, определённых на отрезке и интегрируемых по Лебегу, но неинтегрируемых по Риману. Также интеграл Лебега может иметь смысл для функций, заданных на произвольных множествах.
Идея построения интеграла Лебега состоит в том, что вместо разбиения области определения подынтегральной функции на части и составления потом интегральной суммы из значений функции на этих частях, на интервалы разбивают её область значений, а затем суммируют с соответствующими весами меры прообразов этих интервалов.
Содержание
Определение
Интеграл Лебега определяют индуктивно, переходя от более простых функций к сложным. Будем считать, что дано пространство с мерой , и на нем определена измеримая функция .
Определение 1. Пусть — индикатор некоторого измеримого множества, то есть , где . Тогда интеграл Лебега функции по определению:
Определение 2. Пусть — простая функция, то есть , где , а — конечное разбиение на измеримые множества. Тогда
.
Определение 3. Пусть теперь — неотрицательная функция, то есть . Рассмотрим все простые функции , такие что . Обозначим это семейство . Для каждой функции из этого семейства уже определён интеграл Лебега. Тогда интеграл от задаётся формулой:
Наконец, если функция произвольного знака, то её можно представить в виде разности двух неотрицательных функций. Действительно, легко видеть, что:
где
.
Определение 4. Пусть — произвольная измеримая функция. Тогда ее интеграл задаётся формулой:
.
Определение 5. Пусть наконец произвольное измеримое множество. Тогда по определению
,
где — индикатор-функция множества .
Пример
Рассмотрим функцию Дирихле , заданную на , где — борелевская σ-алгебра на , а — мера Лебега. Эта функция принимает значение в рациональных точках и в иррациональных. Легко увидеть, что не интегрируема в смысле Римана. Однако, она является простой функцией на пространстве с конечной мерой, ибо принимает только два значения, а потому её интеграл Лебега определён и равняется:
Действительно, мера отрезка равна 1, и так как множество рациональных чисел счётно, то его мера равна 0, а значит мера иррациональных чисел равна .
Замечания
Свойства
- Интеграл Лебега линеен, то есть
,
где — произвольные константы;
Сходимость интегралов Лебега от последовательностей функций
Литература
- Колмогоров А.Н., Фомин С.В. Элементы теории функций и функционального анализа. — изд. четвёртое, переработанное. — М.: Наука, 1976. — 544 с.
- Треногин В. А. Функциональный анализ. — М.: Наука, 1980. — 495 с.
- Шилов Г.Е. Математический анализ. Специальный курс. — 2-е. — М.: Физматлит, 1961. — 436 с.