Интегральная микросхема | это... Что такое Интегральная микросхема? (original) (raw)

Современные интегральные микросхемы, предназначенные для поверхностного монтажа.

Советские и зарубежные цифровые микросхемы.

Интегра́льная (engl. Integrated circuit, IC, microcircuit, microchip, silicon chip, or chip), (микро)схе́ма (ИС, ИМС, м/сх), чип, микрочи́п (англ. chip — щепка, обломок, фишка) — микроэлектронное устройство — электронная схема произвольной сложности, изготовленная на полупроводниковом кристалле (или плёнке) и помещённая в неразборный корпус. Часто под интегральной схемой (ИС) понимают собственно кристалл или плёнку с электронной схемой, а под микросхемой (МС) — ИС, заключённую в корпус. В то же время выражение «чип компоненты» означает «компоненты для поверхностного монтажа» в отличие от компонентов для традиционной пайки в отверстия на плате. Поэтому правильнее говорить «чип микросхема», имея в виду микросхему для поверхностного монтажа. В настоящий момент (2009 год) большая часть микросхем изготавливается в корпусах для поверхностного монтажа.

Содержание

История

Изобретение микросхем началось с изучения свойств тонких оксидных плёнок, проявляющихся в эффекте плохой электро-проводимости при небольших электрических напряжениях. Проблема заключалась в том, что в месте соприкосновения двух металлов не происходило электрического контакта или он имел полярные свойства. Глубокие изучения этого феномена привели к открытию диодов а позже транзисторов и интегральных микросхем.

В 1958 году двое учёных, живущих в совершенно разных местах, изобрели практически идентичную модель интегральной схемы. Один из них, Джек Килби, работал на Texas Instruments, другой, Роберт Нойс, был одним из основателей небольшой компании по производству полупроводников Fairchild Semiconductor. Обоих объединил вопрос: «Как в минимум места вместить максимум компонентов?». Транзисторы, резисторы, конденсаторы и другие детали в то время размещались на платах отдельно, и учёные решили попробовать их объединить на одном монолитном кристалле из полупроводникового материала. Только Килби воспользовался германием, а Нойс предпочёл кремний. В 1959 году они отдельно друг от друга получили патенты на свои изобретения — началось противостояние двух компаний, которое закончилось мирным договором и созданием совместной лицензии на производство чипов. После того как в 1961 году Fairchild Semiconductor Corporation пустила интегральные схемы в свободную продажу, их сразу стали использовать в производстве калькуляторов и компьютеров вместо отдельных транзисторов, что позволило значительно уменьшить размер и увеличить производительность.

Первая советская полупроводниковая микросхема была создана в 1961 г. в Таганрогском радиотехническом институте, в лаборатории Л. Н. Колесова.

Первая в СССР полупроводниковая интегральная микросхема была разработана (создана) на основе планарной технологии, разработанной в начале 1960 года в НИИ-35 (затем переименован в НИИ "Пульсар") коллективом, который в дальнейшем был переведён в НИИМЭ (Микрон). Создание первой отечественной кремниевой интегральной схемы было сконцентрировано на разработке и производстве с военной приёмкой серии интегральных кремниевых схем ТС-100 (37 элементов — эквивалент схемотехнической сложности триггера, аналога американских ИС серии SN-51 фирмы Texas Instruments). Образцы-прототипы и производственные образцы кремниевых интегральных схем для воспроизводства были получены из США. Работы проводились НИИ-35 (директор Трутко) и Фрязинским заводом (директор Колмогоров) по оборонному заказу для использования в автономном высотомере системы наведения баллистической ракеты. Разработка включала шесть типовых интегральных кремниевых планарных схем серии ТС-100 и с организацией опытного производства заняла в НИИ-35 три года (с 1962 по 1965 год). Ещё два года ушло на освоение заводского производства с военной приёмкой во Фрязино (1967 год).[1]

Уровни проектирования

В настоящее время большая часть интегральных схем разрабатывается при помощи САПР, которые позволяют автоматизировать и значительно ускорить процесс получения топологических фотошаблонов.

Классификация

Степень интеграции

В СССР были предложены следующие названия микросхем в зависимости от степени интеграции (указано количество элементов для цифровых схем):

В настоящее время название ГБИС практически не используется (например, последние версии процессоров Pentium 4 содержат пока несколько сотен миллионов транзисторов), и все схемы с числом элементов, превышающим 10000, относят к классу СБИС, считая УБИС его подклассом.

Технология изготовления

Вид обрабатываемого сигнала

Аналоговые микросхемы — входные и выходные сигналы изменяются по закону непрерывной функции в диапазоне от положительного до отрицательного напряжения питания.

Цифровые микросхемы — входные и выходные сигналы могут иметь два значения: логический ноль или логическая единица, каждому из которых соответствует определённый диапазон напряжения. Например, для микросхем ТТЛ-логики при питании +5 В диапазон напряжения 0…0,4 В соответствует логическому нулю, а диапазон 2,4…5 В соответствует логической единице. Для микросхем ЭСЛ-логики при питании −5,2 В: логическая единица — это −0,8…−1,03 В, а логический ноль — это −1,6…−1,75 В.

Аналого-цифровые микросхемы совмещают в себе формы цифровой и аналоговой обработки сигналов. По мере развития технологий получают всё большее распространение.

Технологии изготовления

Типы логики

Основным элементом аналоговых микросхем являются транзисторы (биполярные или полевые). Разница в технологии изготовления транзисторов существенно влияет на характеристики микросхем. Поэтому нередко в описании микросхемы указывают технологию изготовления, чтобы подчеркнуть тем самым общую характеристику свойств и возможностей микросхемы. В современных технологиях объединяют технологии биполярных и полевых транзисторов, чтобы добиться улучшения характеристик микросхем.

КМОП и ТТЛ (ТТЛШ) технологии являются наиболее распротранёнными логиками микросхем. Где небходимо экономить потребление тока, применяют КМОП-технологию, где важнее скорость и не требуется экономия потребляемой мощности применяют ТТЛ-технологию. Слабым местом КМОП-микросхем является уязвимость от статического электричества — достаточно коснуться рукой вывода микросхемы и её целостность уже не гарантируется. С развитием технологий ТТЛ и КМОП микросхемы по параметрам сближаются и, как следствие, например, серия микросхем 1564 — сделана по технологии КМОП, а функциональность и размещение в корпусе как у ТТЛ технологии.

Микросхемы, изготовленные по ЭСЛ-технологии, являются самыми быстрыми, но наиболее энергопотребляющими и применялись при производстве вычислительной техники в тех случаях, когда важнейшим параметром была скорость вычисления. В СССР самые производительные ЭВМ типа ЕС106х изготавливались на ЭСЛ-микросхемах. Сейчас эта технология используется редко.

Технологический процесс

При изготовлении микросхем используется фотопроцесс, при этом схему формируют на подложке, обычно из диоксида кремния, полученной термическим оксидированием кремния. Ввиду малости размера элементов микросхем, от использования видимого света и даже ближнего ультрафиолета при засветке давно отказались. В качестве характеристики технологического процесса производства микросхем указывают ширину полосы фотоповторителя и, как следствие, размеры транзисторов (и других элементов) на кристалле. Этот параметр, однако, находится во взаимозависимости c рядом других производственных возможностей: чистотой получаемого кремния, характеристиками инжекторов, методами вытравливания и напыления.

В 70-х годах ширина полосы составляла 2-8 мкм, в 80-х была улучшена до 0,5-2 мкм. Некоторые экспериментальные образцы рентгеновского диапазона обеспечивали 0,18 мкм.

В 90-х годах из-за нового витка «войны платформ» экспериментальные методы стали внедряться в производство и быстро совершенствоваться. В начале 90-х процессоры (например ранние Pentium Pro) изготавливали по технологии 0,5-0,6 мкм. Потом их уровень поднялся до 0,25-0,35 мкм. Следующие процессоры (Pentium 2, K6-2+,

В конце 90-х фирма Texas Instruments создала новую ультрафиолетовую технологию с шириной полосы около 0,08 мкм. Но достичь её в массовом производстве не удавалось вплоть до недавнего времени. Она постепенно продвигалась к нынешнему уровню, совершенствуя второстепенные детали. По обычной технологии удалось обеспечить уровень производства вплоть до 0,09 мкм.

Новые процессоры (сперва это был Core 2 Duo) делают по новой УФ-технологии 0,045 мкм. Есть и другие микросхемы давно достигшие и превысившие данный уровень (в частности видеопроцессоры и flash-память фирмы Samsung — 0,040 мкм). Тем не менее дальнейшее развитие технологии вызывает всё больше трудностей. Обещания фирмы 2006 году так и не сбылись.

Сейчас альянс ведущих разработчиков и производителей микросхем работает над тех. процессом 0,032 мкм.

Контроль качества

Для контроля качества интегральных микросхем широко применяют так называемые тестовые структуры.

Назначение

Интегральная микросхема может обладать законченным, сколь угодно сложным, функционалом — вплоть до целого микрокомпьютера (однокристальный микрокомпьютер).

Аналоговые схемы

Цифровые схемы

Цифровые интегральные микросхемы имеют ряд преимуществ по сравнению с аналоговыми:

Аналогово-цифровые схемы

Серии микросхем

Аналоговые и цифровые микросхемы выпускаются сериями. Серия — это группа микросхем, имеющих единое конструктивно-технологическое исполнение и предназначенные для совместного применения. Микросхемы одной серии, как правило, имеют одинаковые напряжения источников питания, согласованы по входным и выходным сопротивлениям, уровням сигналов.

Корпуса микросхем

Микросхемы выпускаются в двух конструктивных вариантах — корпусном и бескорпусном.
Бескорпусная микросхема — это полупроводниковый кристалл, предназначенный для монтажа в гибридную микросхему или микросборку.
Корпус — это часть конструкции микросхемы, предназначенная для защиты от внешних воздействий и для соединения с внешними электрическими цепями посредством выводов. Корпуса стандартизованы для упрощения технологического процесса изготовления изделий из разных микросхем. Число стандартных корпусов исчисляется сотнями!
В российских корпусах расстояние между выводами измеряется в миллиметрах и наиболее часто это 2,5 мм или 1,25 мм. У импортных микросхем расстояние измеряют в дюймах, используя величину 1/10 или 1/20 дюйма, что соответствует 2,54 и 1,28 мм. В корпусах до 16 выводов эта разница не значительна, а при больших размерах идентичные корпуса уже несовместимы.
В современных импортных корпусах для поверхностного монтажа применяют и метрические размеры: 0,8 мм; 0,65 мм и другие.

Специфические названия микросхем

Из большого количества цифровых микросхем изготавливались процессоры. Фирма Intel 4004, которая выполняла функции процессора. Такие микросхемы получили название микропроцессор. Микропроцессоры фирмы Intel совершенствовались: Intel 8008, Intel 8080, Intel 8086, Intel 8088 (на основе двух последних микропроцессоров фирма персональные компьютеры).

Микропроцессор выполняет в основном функции АЛУ (арифметико-логическое устройство), а дополнительные функции связи с периферией выполнялись с помощью специально для этого изготовленных наборов микросхем. Для первых микропроцессоров число микросхем в наборах исчислялось десятками, а сейчас это набор из двух-трех микросхем, который получил термин чипсет.

Микропроцессоры со встроенными контроллерами памяти и ввода-вывода, ОЗУ и ПЗУ, а также другими дополнительными функциями называют микроконтроллерами.

См. также

Литература

Устройство цифровых процессоров
Архитектура ГарвардскаяФон НейманаБитовые операцииСистема командКольца защиты • RISC • MISC • EPIC • Процессор Intel Pentium
Параллелизм Упреждающее выполнение • КонвейерСуперскалярностьПодмена регистровМультипроцессорМногопоточность
Компоненты АЛУМатематический сопроцессор • Корпус • Векторный процессорРегистрыКэш
Питание Динамическое изменение частоты • Динамическое изменение напряжения
Реализации МикропроцессорГрафический процессорФизический процессор • DSP • Система на кристаллеМикроконтроллерПЛИС