PCI Express | это... Что такое PCI Express? (original) (raw)

PCI-E PCI Express
Pci-express-logo.gif PCI Express logo
Год открытия: 2002 (1.0)15 января 2007 (2.0)ноябрь 2010 (Спецификации версии 3.0)
Разработчик: Intel, PCI Special Interest Group
Что эта шина заменила: AGP, PCI-X, PCI
Ширина в битах: 32
Тип: Последовательная
Эта шина поддерживает горячее подключение? да
Эта шина внешняя? нет

На фотографии слоты материнской платы DFI LanParty nForce4 SLI-DR (сверху вниз): x4 PCI Express,
x16 PCI Express,
x1 PCI Express,
x16 PCI Express,
стандартный 32‑разрядный слот PCI

PCI Express, или PCIe, или PCI-E (также известная как 3GIO for 3rd Generation I/O; не путать с PCI-X и PXI) — компьютерная шина, использующая программную модель шины PCI и высокопроизводительный физический протокол, основанный на последовательной передаче данных.

Разработка стандарта PCI Express была начата фирмой Intel после отказа от шины InfiniBand. Официально первая базовая спецификация PCI Express появилась в июле 2002 года. Развитием стандарта PCI Express занимается организация PCI Special Interest Group.

Содержание

Описание

В отличие от шины PCI, использовавшей для передачи данных общую шину, PCI Express, в общем случае, является пакетной сетью с топологией типа звезда. Устройства PCI Express взаимодействуют между собой через среду, образованную коммутаторами, при этом каждое устройство напрямую связано соединением типа точка-точка с коммутатором.

Кроме того, шиной PCI Express поддерживается:

Шина PCI Express нацелена на использование только в качестве локальной шины. Так как программная модель PCI Express во многом унаследована от PCI, то существующие системы и контроллеры могут быть доработаны для использования шины PCI Express заменой только физического уровня, без доработки программного обеспечения. Высокая пиковая производительность шины PCI Express позволяет использовать её вместо шин AGP и тем более PCI и PCI-X. Де-факто PCI Express заменила эти шины в персональных компьютерах.

Разъёмы

PCI Express X1

Выводы PCI Express X1
№ вывода Назначение № вывода Назначение
B1 +12V A1 PRSNT1#
B2 +12V A2 +12V
B3 +12V A3 +12V
B4 GND A4 GND
B5 SMCLK A5 JTAG2
B6 SMDAT A6 JTAG3
B7 GND A7 JTAG4
B8 +3.3V A8 JTAG5
B9 JTAG1 A9 +3.3V
B10 3.3V__AUX A10 +3.3V
B11 WAKE# A11 PERST#
Перегородка Перегородка
B12 RSVD A12 GND_A12
B13 GND A13 REFCLK+
B14 PETP0 A14 REFCLK-
B15 PETN0 A15 GND
B16 GND A16 PERP0
B17 PRSNT2# A17 PERN0
B18 GND A18 GND

Mini PCI-E

Mini PCI Express — формат шины PCI Express для портативных устройств.

Для этого стандарта разъёма выпускается масса периферийных устройств:

Выводы Mini PCI-E
№ вывода Назначение № вывода Назначение
51 Зарезервировано 52 +3.3V
49 Зарезервировано 50 GND
47 Зарезервировано 48 +1.5V
45 Зарезервировано 46 LED_WPAN#
43 Зарезервировано 44 LED_WLAN#
41 Зарезервировано (+3.3V) 42 LED_WWAN#
39 Зарезервировано (+3.3V) 40 GND
37 Зарезервировано (GND) 38 USB_D+
35 GND 36 USB_D-
33 PETp0 34 GND
31 PETn0 32 SMB_DATA
29 GND 30 SMB_CLK
27 GND 28 +1.5V
25 PERp0 26 GND
23 PERn0 24 +3.3Vaux
21 GND 22 PERST#
19 Зарезервировано (UIM_C4) 20 W_DISABLE#
17 Зарезервировано (UIM_C8) 18 GND
Перегородка Перегородка
15 GND 16 UIM_VPP
13 REFCLK+ 14 UIM_RESET
11 REFCLK- 12 UIM_CLK
9 GND 10 UIM_DATA
7 CLKREQ# 8 UIM_PWR
5 Зарезервировано (COEX2) 6 1.5V
3 Зарезервировано (COEX1) 4 GND
1 WAKE# 2 3.3V

SSD Mini PCI Express

31 Sata TX- 32 IDE_DMARQ
29 GND 30 IDE_DMACK
27 GND 28 IDE_IOREAD
25 Sata RX+ 26 GND
23 Sata RX+ 24 IDE_IOWR
21 GND 22 IDE_RESET
19 IDE_D7 20 IDE_D8
17 IDE_D6 18 GND
Перегородка Перегородка
15 GND 16 IDE_D9
13 IDE_D5 14 IDE_D10
11 IDE_D4 12 IDE_D11
9 GND 10 IDE_D12
7 IDE_D3 8 IDE_D13
5 IDE_D2 6 IDE_D14
3 IDE_D1 4 GND
1 IDE_D0 2 IDE_D15

ExpressCard

Слоты ExpressCard на настоящее время (Ноябрь 2010) применяются для подключения:[2]

Описание протокола

Видеокарта для PCI Express x16

Для подключения устройства PCI Express используется двунаправленное последовательное соединение типа точка-точка, называемое линией (англ. lane — полоса, ряд); это резко отличается от PCI, в которой все устройства подключаются к общей 32-разрядной параллельной двунаправленной шине.

Соединение (англ. link — связь, соединение) между двумя устройствами PCI Express и состоит из одной (x1) или нескольких (x2, x4, x8, x12, x16 и x32) двунаправленных последовательных линий. Каждое устройство должно поддерживать соединение по крайней мере с одной линией (x1).

На электрическом уровне каждое соединение использует низковольтную дифференциальную передачу сигнала (LVDS), приём и передача информации производится каждым устройством PCI Express по отдельным двум проводникам, таким образом, в простейшем случае, устройство подключается к коммутатору PCI Express всего лишь четырьмя проводниками.

Использование подобного подхода имеет следующие преимущества:

В обоих случаях, на шине PCI Express будет использоваться максимальное количество линий, доступных как для карты, так и для слота. Однако это не позволяет устройству работать в слоте, предназначенном для карт с меньшей пропускной способностью шины PCI Express. Например, карта x4 физически не поместится в стандартный слот x1, несмотря на то, что она могла бы работать в слоте x1 с использованием только одной линии. На некоторых материнских платах можно встретить нестандартные слоты x1 и x4, у которых отсутствует крайняя перегородка, таким образом, в них можно устанавливать карты большей длины чем разъем. При этом не обеспечивается питание и заземление выступающей части карты, что может привести к различным проблемам.

PCI Express пересылает всю управляющую информацию, включая прерывания, через те же линии, что используются для передачи данных. Последовательный протокол никогда не может быть заблокирован, таким образом задержки шины PCI Express вполне сравнимы с таковыми для шины PCI (заметим, что шина PCI для передачи сигнала о запросе на прерывание использует отдельные физические линии IRQ#A, IRQ#B, IRQ#C, IRQ#D).

Во всех высокоскоростных последовательных протоколах (например, гигабитный Ethernet), информация о синхронизации должна быть встроена в передаваемый сигнал. На физическом уровне, PCI Express использует метод канального кодирования 8b/10b (8 бит в десяти, избыточность — 20%) для устранения постоянной составляющей в передаваемом сигнале и для встраивания информации о синхронизации в поток данных. В PCI Express 3.0 используется более экономное кодирование 128b/130b с избыточностью 1,5%.

Некоторые протоколы (например, SONET/SDH) используют метод, который называется скремблинг (англ. scrambling) для встраивания информации о синхронизации в поток данных и для "размывания" спектра передаваемого сигнала. Спецификация PCI Express также предусматривает функцию скремблинга, но скремблинг PCI Express отличается от такового для SONET.

Пропускная способность

Битрейт в PCIe 1.0 составляет 2,5 Гбит/с. Для расчёта пропускной способности шины необходимо учесть дуплексность[3] и избыточность 8b/10b (8 бит в десяти). Например, дуплексная пропускная способность соединения x1 составляет:

2,5 · 2 · 0,8 = 4 Гбит/с

В одну/обе стороны, Гбит/с

Связей
x1 x2 x4 x8 x12 x16 x32
PCIe 1.0 2/4 4/8 8/16 16/32 24/48 32/64 64/128
PCIe 2.0 4/8 8/16 16/32 32/64 48/96 64/128 128/256
PCIe 3.0 8/16 16/32 32/64 64/128 96/192 128/256 256/512
PCIe 4.0 (предварительно) [4] 16/32 32/64 64/128 128/256 192/384 256/512 512/1024

Шина UMI — представляет собой модифицированный интерфейс PCI-E x4 c вдвое увеличеной пропускной способностью, за счет перехода с первой на вторую версию стандарта. Входит в состав чипсета AMD Fusion A55.

Конкурирующие протоколы

Кроме PCI Express существует ещё ряд высокоскоростных стандартизованных последовательных интерфейсов, вот только некоторые из них: HyperTransport, InfiniBand, RapidIO, и StarFabric. Каждый интерфейс имеет своих сторонников среди промышленных компаний, так как на разработку спецификаций протоколов уже ушли значительные суммы, и каждый консорциум стремится подчеркнуть преимущества именно своего интерфейса над другими.

Стандартизированный высокоскоростной интерфейс с одной стороны должен обладать гибкостью и расширяемостью, а с другой стороны должен обеспечивать низкое время задержки и невысокие накладные расходы (то есть доля служебной информации пакета не должна быть велика). В сущности, различия между интерфейсами заключаются именно в выбранном разработчиками конкретного интерфейса компромиссе между этими двумя конфликтующими требованиями.

К примеру, дополнительная служебная маршрутная информация в пакете позволяет организовать сложную и гибкую маршрутизацию пакета, но увеличивает накладные расходы на обработку пакета, также снижается пропускная способность интерфейса, усложняется программное обеспечение, которое инициализирует и настраивает устройства, подключенные к интерфейсу. При необходимости обеспечения горячего подключения устройств необходимо специальное программное обеспечение, которое бы отслеживало изменение в топологии сети. Примерами интерфейсов, которые приспособлены для этого являются RapidIO, InfiniBand и StarFabric.

В то же время, укорачивая пакеты можно уменьшить задержку при передаче данных, что является важным требованием к интерфейсу памяти. Но небольшой размер пакетов приводит к тому, что доля служебных полей пакета увеличивается, что снижает эффективную пропускную способность интерфейса. Примером интерфейса такого типа является HyperTransport.

Положение PCI Express — между описанными подходами, так как шина PCI Express предназначена для работы в качестве локальной шины, нежели шины процессор-память или сложной маршрутизируемой сети. Кроме того, PCI Express изначально задумывалась как шина, логически совместимая с шиной PCI, что также внесло свои ограничения.

PCI Express 2.0

Группа PCI-SIG выпустила спецификацию PCI Express 2.0 15 января 2007 года. Основные нововведения в PCI Express 2.0:

Внешняя кабельная спецификация PCIe

7 февраля 2007 года PCI-SIG выпустила спецификацию внешней кабельной системы PCIE. Новая спецификация позволяет использовать кабели длиной до 10 метров, работающие с пропускной способностью 2,5 Гбит/с.

PCI Express 2.1

По физическим характеристикам (скорость, разъём) соответствует 2.0, в программной части добавлены функции, которые в полной мере планируют внедрить в версии 3.0. Так как большинство системных плат продаются с версией 2.0, наличие только видеокарты с 2.1 не даёт задействовать режим 2.1.

PCI Express 3.0

В ноябре 2010 года[5] были утверждены спецификации версии PCI Express 3.0. Интерфейс обладает скоростью передачи данных 8 GT/s(Гигатранзакций/с). Но, несмотря на это, его реальная пропускная способность всё равно была увеличена вдвое по сравнению со стандартом PCI Express 2.0. Этого удалось достигнуть благодаря более агрессивной схеме кодирования 128b/130b, когда 128 бит данных пересылаемых по шине кодируются 130 битами. PCI Express 2.0 обладает скоростью передачи данных 5 GT/s и схемой кодирования 8b/10b. При этом сохранилась совместимость с предыдущими версиями PCI Express. По данным PCI-SIG, первые тесты PCI Express 3.0 начались в 2011 году, средства для проверки совместимости для партнеров появились лишь в середине 2011-го, а реальные устройства ― только в 2012-м.

Компания MSI стала первым в мире[6] производителем, выпустившим материнскую плату с поддержкой стандарта PCI Express 3.0.

Летом 2011 года Gigabyte официально представила материнскую плату G1.Sniper 2, построенную на чипсете Intel Z68 и поддерживающую интерфейс PCI Express 3.0.[7][8]

PCI Express 4.0

PCI Special Interest Group (PCI SIG) заявила, что PCI Express 4.0 может быть стандартизирован до 2015 года. Он будет иметь пропускную способность 16 GT/с или более, т.е. будет в два раза быстрее PCIe 3.0.[9]

См. также

Примечания

  1. Зарезервированные выводы под SIM
  2. ExpressCard. Where to Buy page.
  3. PCI Express 3.0. Frequently Asked Questions. PCI-SIG. Retrieved 23 November 2008. (англ.)
  4. Maximum PC | PCIe 4.0 to Double the Speed of PCIe 3.0
  5. Утверждена спецификация PCI Express 3.0 — скорость удвоена
  6. MSI анонсировала первую в мире системную плату с поддержкой PCI Express 3.0
  7. Gigabyte официально представила материнскую плату G1.Sniper 2
  8. GIGABYTE G1.Sniper 2: официальные фото и подробности
  9. PCI Express 4.0 принесёт ускорение минимум в 2 раза // 3DNews - Новости Hardware

Литература

Ссылки

Просмотр этого шаблона Компьютерные шины
Основные понятия Шина адресаШина данныхШина управленияПропускные способности
Процессоры BSBFSBDMIHyperTransportQPI
Внутренние AGP • ASUS Media Bus • EISAInfiniBandISALPC • MBus • MCA • NuBus • PCIPCIePCI-XQ-BusSBusSMBusVLBVMEbusZorro III
Ноутбуки ExpressCardMXMPC Card
Накопители ST-506ESDIATAeSATAFibre Channel • HIPPI • iSCSISASSATASCSI
Периферия 1-WireADBI²CIEEE 1284 (LPT) • IEEE 1394 (FireWire) • Multibus • PS/2 • RS-232RS-485SPIUSBИгровой порт
Универсальные Futurebus • InfiniBand • QuickRing • SCIRapidIOIEEE-488Thunderbolt (Light Peak)