§25.1 Special Notation ‣ Notation ‣ Chapter 25 Zeta and Related Functions (original) (raw)

k,m,n nonnegative integers.
p prime number.
x real variable.
a real or complex parameter.
s=σ+i⁢t complex variable.
z=x+i⁢y complex variable.
γ Euler’s constant (§5.2(ii)).
ψ⁡(x) digamma functionΓ′⁡(x)/Γ⁡(x)except in §25.16. See §5.2(i).
Bn,Bn⁡(x) Bernoulli number and polynomial (§24.2(i)).
B~n⁡(x) periodic Bernoulli functionBn⁡(x−⌊x⌋).
m|n m divides n.
primes on function symbols: derivatives with respect to argument.

The main function treated in this chapter is the Riemann zeta functionζ⁡(s). This notation was introduced in Riemann (1859).

The main related functions are the Hurwitz zeta function ζ⁡(s,a), the dilogarithm Li2⁡(z), the polylogarithm Lis⁡(z)(also known as Jonquière’s function ϕ⁡(z,s)), Lerch’s transcendent Φ⁡(z,s,a), and the Dirichlet L-functionsL⁡(s,χ).