DLMF: Bibliography N ‣ Bibliography (original) (raw)
A. Nakamura (1996) Toda equation and its solutions in special functions. J. Phys. Soc. Japan 65 (6), pp. 1589–1597.
M. Nardin, W. F. Perger, and A. Bhalla (1992a) Algorithm 707: CONHYP: A numerical evaluator of the confluent hypergeometric function for complex arguments of large magnitudes. ACM Trans. Math. Software 18 (3), pp. 345–349.
M. Nardin, W. F. Perger, and A. Bhalla (1992b) Numerical evaluation of the confluent hypergeometric function for complex arguments of large magnitudes. J. Comput. Appl. Math. 39 (2), pp. 193–200.
W. Narkiewicz (2000) The Development of Prime Number Theory: From Euclid to Hardy and Littlewood. Springer-Verlag, Berlin.
A. Natarajan and N. Mohankumar (1993) On the numerical evaluation of the generalised Fermi-Dirac integrals. Comput. Phys. Comm. 76 (1), pp. 48–50.
National Bureau of Standards (1944) Tables of Lagrangian Interpolation Coefficients. Columbia University Press, New York.
National Physical Laboratory (1961) Modern Computing Methods. 2nd edition, Notes on Applied Science, No. 16, Her Majesty’s Stationery Office, London.
L. M. Navas, F. J. Ruiz, and J. L. Varona (2013) Asymptotic behavior of the Lerch transcendent function. J. Approx. Theory 170, pp. 21–31.
D. Naylor (1984) On simplified asymptotic formulas for a class of Mathieu functions. SIAM J. Math. Anal. 15 (6), pp. 1205–1213.
D. Naylor (1987) On a simplified asymptotic formula for the Mathieu function of the third kind. SIAM J. Math. Anal. 18 (6), pp. 1616–1629.
D. Naylor (1989) On an integral transform involving a class of Mathieu functions. SIAM J. Math. Anal. 20 (6), pp. 1500–1513.
D. Naylor (1990) On an asymptotic expansion of the Kontorovich-Lebedev transform. Applicable Anal. 39 (4), pp. 249–263.
D. Naylor (1996) On an asymptotic expansion of the Kontorovich-Lebedev transform. Methods Appl. Anal. 3 (1), pp. 98–108.
National Bureau of Standards (1958) Integrals of Airy Functions. National Bureau of Standards Applied Mathematics Series, U.S. Government Printing Office, Washington, D.C..
National Bureau of Standards (1967) Tables Relating to Mathieu Functions: Characteristic Values, Coefficients, and Joining Factors. 2nd edition, National Bureau of Standards Applied Mathematics Series, U.S. Government Printing Office, Washington, D.C..
J. Negro, L. M. Nieto, and O. Rosas-Ortiz (2000) Confluent hypergeometric equations and related solvable potentials in quantum mechanics. J. Math. Phys. 41 (12), pp. 7964–7996.
M. Neher (2007) Complex standard functions and their implementation in the CoStLy library. ACM Trans. Math. Softw. 33 (1), pp. Article 2.
W. J. Nellis and B. C. Carlson (1966) Reduction and evaluation of elliptic integrals. Math. Comp. 20 (94), pp. 223–231.
G. Nemes (2017a) Error bounds for the asymptotic expansion of the Hurwitz zeta function. Proc. A. 473 (2203), pp. 20170363, 16.
G. Nemes and A. B. Olde Daalhuis (2016) Uniform asymptotic expansion for the incomplete beta function. SIGMA Symmetry Integrability Geom. Methods Appl. 12, pp. 101, 5 pages.
G. Nemes (2013a) An explicit formula for the coefficients in Laplace’s method. Constr. Approx. 38 (3), pp. 471–487.
G. Nemes (2013b) Error bounds and exponential improvement for Hermite’s asymptotic expansion for the gamma function. Appl. Anal. Discrete Math. 7 (1), pp. 161–179.
G. Nemes (2013c) Generalization of Binet’s Gamma function formulas. Integral Transforms Spec. Funct. 24 (8), pp. 597–606.
G. Nemes (2014a) Error bounds and exponential improvement for the asymptotic expansion of the Barnes G-function. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 470 (2172), pp. 20140534, 14.
G. Nemes (2014b) The resurgence properties of the large order asymptotics of the Anger-Weber function I. J. Class. Anal. 4 (1), pp. 1–39.
G. Nemes (2014c) The resurgence properties of the large order asymptotics of the Anger-Weber function II. J. Class. Anal. 4 (2), pp. 121–147.
G. Nemes (2015a) Error bounds and exponential improvements for the asymptotic expansions of the gamma function and its reciprocal. Proc. Roy. Soc. Edinburgh Sect. A 145 (3), pp. 571–596.
G. Nemes (2015b) On the large argument asymptotics of the Lommel function via Stieltjes transforms. Asymptot. Anal. 91 (3-4), pp. 265–281.
G. Nemes (2015c) The resurgence properties of the incomplete gamma function II. Stud. Appl. Math. 135 (1), pp. 86–116.
G. Nemes (2016) The resurgence properties of the incomplete gamma function, I. Anal. Appl. (Singap.) 14 (5), pp. 631–677.
G. Nemes (2017b) Error Bounds for the Large-Argument Asymptotic Expansions of the Hankel and Bessel Functions. Acta Appl. Math. 150, pp. 141–177.
G. Nemes (2018) Error bounds for the large-argument asymptotic expansions of the Lommel and allied functions. Stud. Appl. Math. 140 (4), pp. 508–541.
G. Nemes (2020) An extension of Laplace’s method. Constr. Approx. 51 (2), pp. 247–272.
G. Nemes (2021) Proofs of two conjectures on the real zeros of the cylinder and Airy functions. SIAM J. Math. Anal. 53 (4), pp. 4328–4349.
G. Németh (1992) Mathematical Approximation of Special Functions. Nova Science Publishers Inc., Commack, NY.
J. J. Nestor (1984) Uniform Asymptotic Approximations of Solutions of Second-order Linear Differential Equations, with a Coalescing Simple Turning Point and Simple Pole. Ph.D. Thesis, University of Maryland, College Park, MD.
NetNUMPAC (free Fortran library)
E. Neuman (1969a) Elliptic integrals of the second and third kinds. Zastos. Mat. 11, pp. 99–102.
E. Neuman (1969b) On the calculation of elliptic integrals of the second and third kinds. Zastos. Mat. 11, pp. 91–94.
E. Neuman (2003) Bounds for symmetric elliptic integrals. J. Approx. Theory 122 (2), pp. 249–259.
E. Neuman (2004) Inequalities involving Bessel functions of the first kind. JIPAM. J. Inequal. Pure Appl. Math. 5 (4), pp. Article 94, 4 pp. (electronic).
E. Neuman (2013) Inequalities and bounds for the incomplete gamma function. Results Math. 63 (3-4), pp. 1209–1214.
P. G. Nevai (1979) Orthogonal polynomials. Mem. Amer. Math. Soc. 18 (213), pp. v+185 pp..
P. Nevai (1986) Géza Freud, orthogonal polynomials and Christoffel functions. A case study. J. Approx. Theory 48 (1), pp. 3–167.
E. H. Neville (1951) Jacobian Elliptic Functions. 2nd edition, Clarendon Press, Oxford.
J. N. Newman (1984) Approximations for the Bessel and Struve functions. Math. Comp. 43 (168), pp. 551–556.
M. Newman (1967) Solving equations exactly. J. Res. Nat. Bur. Standards Sect. B 71B, pp. 171–179.
R. G. Newton (2002) Scattering theory of waves and particles. Dover Publications, Inc., Mineola, NY.
T. D. Newton (1952) Coulomb Functions for Large Values of the Parameter η. Technical report Atomic Energy of Canada Limited, Chalk River, Ontario.
E. W. Ng and M. Geller (1969) A table of integrals of the error functions. J. Res. Nat. Bur. Standards Sect B. 73B, pp. 1–20.
N. Nielsen (1906a) Handbuch der Theorie der Gammafunktion. B. G. Teubner, Leipzig (German).
N. Nielsen (1906b) Theorie des Integrallogarithmus und verwandter Transzendenten. B. G. Teubner, Leipzig (German).
N. Nielsen (1909) Der Eulersche Dilogarithmus und seine Verallgemeinerungen. Nova Acta Leopoldina 90, pp. 123–212.
N. Nielsen (1923) Traité Élémentaire des Nombres de Bernoulli. Gauthier-Villars, Paris.
N. Nielsen (1965) Die Gammafunktion. Band I. Handbuch der Theorie der Gammafunktion. Band II. Theorie des Integrallogarithmus und verwandter Transzendenten. Chelsea Publishing Co., New York (German).
M. M. Nieto and L. M. Simmons (1979) Eigenstates, coherent states, and uncertainty products for the Morse oscillator. Phys. Rev. A (3) 19 (2), pp. 438–444.
Y. Nievergelt (1995) Bisection hardly ever converges linearly. Numer. Math. 70 (1), pp. 111–118.
A. Nijenhuis and H. S. Wilf (1975) Combinatorial Algorithms. Academic Press, New York.
A. F. Nikiforov and V. B. Uvarov (1988) Special Functions of Mathematical Physics: A Unified Introduction with Applications. Birkhäuser Verlag, Basel.
G. Nikolov and V. Pillwein (2015) An extension of Turán’s inequality. Math. Inequal. Appl. 18 (1), pp. 321–335.
I. Niven, H. S. Zuckerman, and H. L. Montgomery (1991) An Introduction to the Theory of Numbers. 5th edition, John Wiley & Sons Inc., New York.
NMS (free collection of Fortran subroutines)
C. J. Noble and I. J. Thompson (1984) COULN, a program for evaluating negative energy Coulomb functions. Comput. Phys. Comm. 33 (4), pp. 413–419.
C. J. Noble (2004) Evaluation of negative energy Coulomb (Whittaker) functions. Comput. Phys. Comm. 159 (1), pp. 55–62.
V. A. Noonburg (1995) A separating surface for the Painlevé differential equation x′′=x2−t. J. Math. Anal. Appl. 193 (3), pp. 817–831.
N. E. Nørlund (1955) Hypergeometric functions. Acta Math. 94, pp. 289–349.
N. E. Nörlund (1922) Mémoire sur les polynomes de Bernoulli. Acta Math. 43, pp. 121–196 (French).
N. E. Nörlund (1924) Vorlesungen über Differenzenrechnung. Springer-Verlag, Berlin (German).
L. N. Nosova and S. A. Tumarkin (1965) Tables of Generalized Airy Functions for the Asymptotic Solution of the Differential Equations ϵ(py′)′+(q+ϵr)y=f. Pergamon Press, Oxford.
M. Noumi and J. V. Stokman (2004) Askey-Wilson polynomials: an affine Hecke algebra approach. In Laredo Lectures on Orthogonal Polynomials and Special Functions, Adv. Theory Spec. Funct. Orthogonal Polynomials, pp. 111–144.
M. Noumi and Y. Yamada (1998) Affine Weyl groups, discrete dynamical systems and Painlevé equations. Comm. Math. Phys. 199 (2), pp. 281–295.
M. Noumi and Y. Yamada (1999) Symmetries in the fourth Painlevé equation and Okamoto polynomials. Nagoya Math. J. 153, pp. 53–86.
M. Noumi (2004) Painlevé Equations through Symmetry. Translations of Mathematical Monographs, Vol. 223, American Mathematical Society, Providence, RI.
V. Yu. Novokshënov (1985) The asymptotic behavior of the general real solution of the third Painlevé equation. Dokl. Akad. Nauk SSSR 283 (5), pp. 1161–1165 (Russian).
V. Yu. Novokshënov (1990) The Boutroux ansatz for the second Painlevé equation in the complex domain. Izv. Akad. Nauk SSSR Ser. Mat. 54 (6), pp. 1229–1251 (Russian).
Number Theory Web (website)
Numerical Recipes (commercial C, C++, Fortran 77, and Fortran 90 libraries)
H. M. Nussenzveig (1965) High-frequency scattering by an impenetrable sphere. Ann. Physics 34 (1), pp. 23–95.
H. M. Nussenzveig (1992) Diffraction Effects in Semiclassical Scattering. Montroll Memorial Lecture Series in Mathematical Physics, Cambridge University Press.
J. F. Nye (1999) Natural Focusing and Fine Structure of Light: Caustics and Wave Dislocations. Institute of Physics Publishing, Bristol.
J. F. Nye (2006) Dislocation lines in the hyperbolic umbilic diffraction catastrophe. Proc. Roy. Soc. Lond. Ser. A 462, pp. 2299–2313.
J. F. Nye (2007) Dislocation lines in the swallowtail diffraction catastrophe. Proc. Roy. Soc. Lond. Ser. A 463, pp. 343–355.