process.rs - source (original) (raw)

1//! A module for working with processes.
2//!
3//! This module is mostly concerned with spawning and interacting with child
4//! processes, but it also provides [`abort`] and [`exit`] for terminating the
5//! current process.
6//!
7//! # Spawning a process
8//!
9//! The [`Command`] struct is used to configure and spawn processes:
10//!
11//! ```no_run
12//! use std::process::Command;
13//!
14//! let output = Command::new("echo")
15//!     .arg("Hello world")
16//!     .output()
17//!     .expect("Failed to execute command");
18//!
19//! assert_eq!(b"Hello world\n", output.stdout.as_slice());
20//! ```
21//!
22//! Several methods on [`Command`], such as [`spawn`] or [`output`], can be used
23//! to spawn a process. In particular, [`output`] spawns the child process and
24//! waits until the process terminates, while [`spawn`] will return a [`Child`]
25//! that represents the spawned child process.
26//!
27//! # Handling I/O
28//!
29//! The [`stdout`], [`stdin`], and [`stderr`] of a child process can be
30//! configured by passing an [`Stdio`] to the corresponding method on
31//! [`Command`]. Once spawned, they can be accessed from the [`Child`]. For
32//! example, piping output from one command into another command can be done
33//! like so:
34//!
35//! ```no_run
36//! use std::process::{Command, Stdio};
37//!
38//! // stdout must be configured with `Stdio::piped` in order to use
39//! // `echo_child.stdout`
40//! let echo_child = Command::new("echo")
41//!     .arg("Oh no, a tpyo!")
42//!     .stdout(Stdio::piped())
43//!     .spawn()
44//!     .expect("Failed to start echo process");
45//!
46//! // Note that `echo_child` is moved here, but we won't be needing
47//! // `echo_child` anymore
48//! let echo_out = echo_child.stdout.expect("Failed to open echo stdout");
49//!
50//! let mut sed_child = Command::new("sed")
51//!     .arg("s/tpyo/typo/")
52//!     .stdin(Stdio::from(echo_out))
53//!     .stdout(Stdio::piped())
54//!     .spawn()
55//!     .expect("Failed to start sed process");
56//!
57//! let output = sed_child.wait_with_output().expect("Failed to wait on sed");
58//! assert_eq!(b"Oh no, a typo!\n", output.stdout.as_slice());
59//! ```
60//!
61//! Note that [`ChildStderr`] and [`ChildStdout`] implement [`Read`] and
62//! [`ChildStdin`] implements [`Write`]:
63//!
64//! ```no_run
65//! use std::process::{Command, Stdio};
66//! use std::io::Write;
67//!
68//! let mut child = Command::new("/bin/cat")
69//!     .stdin(Stdio::piped())
70//!     .stdout(Stdio::piped())
71//!     .spawn()
72//!     .expect("failed to execute child");
73//!
74//! // If the child process fills its stdout buffer, it may end up
75//! // waiting until the parent reads the stdout, and not be able to
76//! // read stdin in the meantime, causing a deadlock.
77//! // Writing from another thread ensures that stdout is being read
78//! // at the same time, avoiding the problem.
79//! let mut stdin = child.stdin.take().expect("failed to get stdin");
80//! std::thread::spawn(move || {
81//!     stdin.write_all(b"test").expect("failed to write to stdin");
82//! });
83//!
84//! let output = child
85//!     .wait_with_output()
86//!     .expect("failed to wait on child");
87//!
88//! assert_eq!(b"test", output.stdout.as_slice());
89//! ```
90//!
91//! # Windows argument splitting
92//!
93//! On Unix systems arguments are passed to a new process as an array of strings,
94//! but on Windows arguments are passed as a single commandline string and it is
95//! up to the child process to parse it into an array. Therefore the parent and
96//! child processes must agree on how the commandline string is encoded.
97//!
98//! Most programs use the standard C run-time `argv`, which in practice results
99//! in consistent argument handling. However, some programs have their own way of
100//! parsing the commandline string. In these cases using [`arg`] or [`args`] may
101//! result in the child process seeing a different array of arguments than the
102//! parent process intended.
103//!
104//! Two ways of mitigating this are:
105//!
106//! * Validate untrusted input so that only a safe subset is allowed.
107//! * Use [`raw_arg`] to build a custom commandline. This bypasses the escaping
108//!   rules used by [`arg`] so should be used with due caution.
109//!
110//! `cmd.exe` and `.bat` files use non-standard argument parsing and are especially
111//! vulnerable to malicious input as they may be used to run arbitrary shell
112//! commands. Untrusted arguments should be restricted as much as possible.
113//! For examples on handling this see [`raw_arg`].
114//!
115//! ### Batch file special handling
116//!
117//! On Windows, `Command` uses the Windows API function [`CreateProcessW`] to
118//! spawn new processes. An undocumented feature of this function is that
119//! when given a `.bat` file as the application to run, it will automatically
120//! convert that into running `cmd.exe /c` with the batch file as the next argument.
121//!
122//! For historical reasons Rust currently preserves this behavior when using
123//! [`Command::new`], and escapes the arguments according to `cmd.exe` rules.
124//! Due to the complexity of `cmd.exe` argument handling, it might not be
125//! possible to safely escape some special characters, and using them will result
126//! in an error being returned at process spawn. The set of unescapeable
127//! special characters might change between releases.
128//!
129//! Also note that running batch scripts in this way may be removed in the
130//! future and so should not be relied upon.
131//!
132//! [`spawn`]: Command::spawn
133//! [`output`]: Command::output
134//!
135//! [`stdout`]: Command::stdout
136//! [`stdin`]: Command::stdin
137//! [`stderr`]: Command::stderr
138//!
139//! [`Write`]: io::Write
140//! [`Read`]: io::Read
141//!
142//! [`arg`]: Command::arg
143//! [`args`]: Command::args
144//! [`raw_arg`]: crate::os::windows::process::CommandExt::raw_arg
145//!
146//! [`CreateProcessW`]: https://learn.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-createprocessw
147
148#![stable(feature = "process", since = "1.0.0")]
149#![deny(unsafe_op_in_unsafe_fn)]
150
151#[cfg(all(
152    test,
153    not(any(
154        target_os = "emscripten",
155        target_os = "wasi",
156        target_env = "sgx",
157        target_os = "xous",
158        target_os = "trusty",
159    ))
160))]
161mod tests;
162
163use crate::convert::Infallible;
164use crate::ffi::OsStr;
165use crate::io::prelude::*;
166use crate::io::{self, BorrowedCursor, IoSlice, IoSliceMut};
167use crate::num::NonZero;
168use crate::path::Path;
169use crate::sys::pipe::{AnonPipe, read2};
170use crate::sys::process as imp;
171use crate::sys_common::{AsInner, AsInnerMut, FromInner, IntoInner};
172use crate::{fmt, fs, str};
173
174/// Representation of a running or exited child process.
175///
176/// This structure is used to represent and manage child processes. A child
177/// process is created via the [`Command`] struct, which configures the
178/// spawning process and can itself be constructed using a builder-style
179/// interface.
180///
181/// There is no implementation of [`Drop`] for child processes,
182/// so if you do not ensure the `Child` has exited then it will continue to
183/// run, even after the `Child` handle to the child process has gone out of
184/// scope.
185///
186/// Calling [`wait`] (or other functions that wrap around it) will make
187/// the parent process wait until the child has actually exited before
188/// continuing.
189///
190/// # Warning
191///
192/// On some systems, calling [`wait`] or similar is necessary for the OS to
193/// release resources. A process that terminated but has not been waited on is
194/// still around as a "zombie". Leaving too many zombies around may exhaust
195/// global resources (for example process IDs).
196///
197/// The standard library does *not* automatically wait on child processes (not
198/// even if the `Child` is dropped), it is up to the application developer to do
199/// so. As a consequence, dropping `Child` handles without waiting on them first
200/// is not recommended in long-running applications.
201///
202/// # Examples
203///
204/// ```should_panic
205/// use std::process::Command;
206///
207/// let mut child = Command::new("/bin/cat")
208///     .arg("file.txt")
209///     .spawn()
210///     .expect("failed to execute child");
211///
212/// let ecode = child.wait().expect("failed to wait on child");
213///
214/// assert!(ecode.success());
215/// ```
216///
217/// [`wait`]: Child::wait
218#[stable(feature = "process", since = "1.0.0")]
219#[cfg_attr(not(test), rustc_diagnostic_item = "Child")]
220pub struct Child {
221    pub(crate) handle: imp::Process,
222
223    /// The handle for writing to the child's standard input (stdin), if it
224    /// has been captured. You might find it helpful to do
225    ///
226    /// ```ignore (incomplete)
227    /// let stdin = child.stdin.take().expect("handle present");
228    /// ```
229    ///
230    /// to avoid partially moving the `child` and thus blocking yourself from calling
231    /// functions on `child` while using `stdin`.
232    #[stable(feature = "process", since = "1.0.0")]
233    pub stdin: Option<ChildStdin>,
234
235    /// The handle for reading from the child's standard output (stdout), if it
236    /// has been captured. You might find it helpful to do
237    ///
238    /// ```ignore (incomplete)
239    /// let stdout = child.stdout.take().expect("handle present");
240    /// ```
241    ///
242    /// to avoid partially moving the `child` and thus blocking yourself from calling
243    /// functions on `child` while using `stdout`.
244    #[stable(feature = "process", since = "1.0.0")]
245    pub stdout: Option<ChildStdout>,
246
247    /// The handle for reading from the child's standard error (stderr), if it
248    /// has been captured. You might find it helpful to do
249    ///
250    /// ```ignore (incomplete)
251    /// let stderr = child.stderr.take().expect("handle present");
252    /// ```
253    ///
254    /// to avoid partially moving the `child` and thus blocking yourself from calling
255    /// functions on `child` while using `stderr`.
256    #[stable(feature = "process", since = "1.0.0")]
257    pub stderr: Option<ChildStderr>,
258}
259
260/// Allows extension traits within `std`.
261#[unstable(feature = "sealed", issue = "none")]
262impl crate::sealed::Sealed for Child {}
263
264impl AsInner<imp::Process> for Child {
265    #[inline]
266    fn as_inner(&self) -> &imp::Process {
267        &self.handle
268    }
269}
270
271impl FromInner<(imp::Process, imp::StdioPipes)> for Child {
272    fn from_inner((handle, io): (imp::Process, imp::StdioPipes)) -> Child {
273        Child {
274            handle,
275            stdin: io.stdin.map(ChildStdin::from_inner),
276            stdout: io.stdout.map(ChildStdout::from_inner),
277            stderr: io.stderr.map(ChildStderr::from_inner),
278        }
279    }
280}
281
282impl IntoInner<imp::Process> for Child {
283    fn into_inner(self) -> imp::Process {
284        self.handle
285    }
286}
287
288#[stable(feature = "std_debug", since = "1.16.0")]
289impl fmt::Debug for Child {
290    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
291        f.debug_struct("Child")
292            .field("stdin", &self.stdin)
293            .field("stdout", &self.stdout)
294            .field("stderr", &self.stderr)
295            .finish_non_exhaustive()
296    }
297}
298
299/// A handle to a child process's standard input (stdin).
300///
301/// This struct is used in the [`stdin`] field on [`Child`].
302///
303/// When an instance of `ChildStdin` is [dropped], the `ChildStdin`'s underlying
304/// file handle will be closed. If the child process was blocked on input prior
305/// to being dropped, it will become unblocked after dropping.
306///
307/// [`stdin`]: Child::stdin
308/// [dropped]: Drop
309#[stable(feature = "process", since = "1.0.0")]
310pub struct ChildStdin {
311    inner: AnonPipe,
312}
313
314// In addition to the `impl`s here, `ChildStdin` also has `impl`s for
315// `AsFd`/`From<OwnedFd>`/`Into<OwnedFd>` and
316// `AsRawFd`/`IntoRawFd`/`FromRawFd`, on Unix and WASI, and
317// `AsHandle`/`From<OwnedHandle>`/`Into<OwnedHandle>` and
318// `AsRawHandle`/`IntoRawHandle`/`FromRawHandle` on Windows.
319
320#[stable(feature = "process", since = "1.0.0")]
321impl Write for ChildStdin {
322    fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
323        (&*self).write(buf)
324    }
325
326    fn write_vectored(&mut self, bufs: &[IoSlice<'_>]) -> io::Result<usize> {
327        (&*self).write_vectored(bufs)
328    }
329
330    fn is_write_vectored(&self) -> bool {
331        io::Write::is_write_vectored(&&*self)
332    }
333
334    #[inline]
335    fn flush(&mut self) -> io::Result<()> {
336        (&*self).flush()
337    }
338}
339
340#[stable(feature = "write_mt", since = "1.48.0")]
341impl Write for &ChildStdin {
342    fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
343        self.inner.write(buf)
344    }
345
346    fn write_vectored(&mut self, bufs: &[IoSlice<'_>]) -> io::Result<usize> {
347        self.inner.write_vectored(bufs)
348    }
349
350    fn is_write_vectored(&self) -> bool {
351        self.inner.is_write_vectored()
352    }
353
354    #[inline]
355    fn flush(&mut self) -> io::Result<()> {
356        Ok(())
357    }
358}
359
360impl AsInner<AnonPipe> for ChildStdin {
361    #[inline]
362    fn as_inner(&self) -> &AnonPipe {
363        &self.inner
364    }
365}
366
367impl IntoInner<AnonPipe> for ChildStdin {
368    fn into_inner(self) -> AnonPipe {
369        self.inner
370    }
371}
372
373impl FromInner<AnonPipe> for ChildStdin {
374    fn from_inner(pipe: AnonPipe) -> ChildStdin {
375        ChildStdin { inner: pipe }
376    }
377}
378
379#[stable(feature = "std_debug", since = "1.16.0")]
380impl fmt::Debug for ChildStdin {
381    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
382        f.debug_struct("ChildStdin").finish_non_exhaustive()
383    }
384}
385
386/// A handle to a child process's standard output (stdout).
387///
388/// This struct is used in the [`stdout`] field on [`Child`].
389///
390/// When an instance of `ChildStdout` is [dropped], the `ChildStdout`'s
391/// underlying file handle will be closed.
392///
393/// [`stdout`]: Child::stdout
394/// [dropped]: Drop
395#[stable(feature = "process", since = "1.0.0")]
396pub struct ChildStdout {
397    inner: AnonPipe,
398}
399
400// In addition to the `impl`s here, `ChildStdout` also has `impl`s for
401// `AsFd`/`From<OwnedFd>`/`Into<OwnedFd>` and
402// `AsRawFd`/`IntoRawFd`/`FromRawFd`, on Unix and WASI, and
403// `AsHandle`/`From<OwnedHandle>`/`Into<OwnedHandle>` and
404// `AsRawHandle`/`IntoRawHandle`/`FromRawHandle` on Windows.
405
406#[stable(feature = "process", since = "1.0.0")]
407impl Read for ChildStdout {
408    fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
409        self.inner.read(buf)
410    }
411
412    fn read_buf(&mut self, buf: BorrowedCursor<'_>) -> io::Result<()> {
413        self.inner.read_buf(buf)
414    }
415
416    fn read_vectored(&mut self, bufs: &mut [IoSliceMut<'_>]) -> io::Result<usize> {
417        self.inner.read_vectored(bufs)
418    }
419
420    #[inline]
421    fn is_read_vectored(&self) -> bool {
422        self.inner.is_read_vectored()
423    }
424
425    fn read_to_end(&mut self, buf: &mut Vec<u8>) -> io::Result<usize> {
426        self.inner.read_to_end(buf)
427    }
428}
429
430impl AsInner<AnonPipe> for ChildStdout {
431    #[inline]
432    fn as_inner(&self) -> &AnonPipe {
433        &self.inner
434    }
435}
436
437impl IntoInner<AnonPipe> for ChildStdout {
438    fn into_inner(self) -> AnonPipe {
439        self.inner
440    }
441}
442
443impl FromInner<AnonPipe> for ChildStdout {
444    fn from_inner(pipe: AnonPipe) -> ChildStdout {
445        ChildStdout { inner: pipe }
446    }
447}
448
449#[stable(feature = "std_debug", since = "1.16.0")]
450impl fmt::Debug for ChildStdout {
451    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
452        f.debug_struct("ChildStdout").finish_non_exhaustive()
453    }
454}
455
456/// A handle to a child process's stderr.
457///
458/// This struct is used in the [`stderr`] field on [`Child`].
459///
460/// When an instance of `ChildStderr` is [dropped], the `ChildStderr`'s
461/// underlying file handle will be closed.
462///
463/// [`stderr`]: Child::stderr
464/// [dropped]: Drop
465#[stable(feature = "process", since = "1.0.0")]
466pub struct ChildStderr {
467    inner: AnonPipe,
468}
469
470// In addition to the `impl`s here, `ChildStderr` also has `impl`s for
471// `AsFd`/`From<OwnedFd>`/`Into<OwnedFd>` and
472// `AsRawFd`/`IntoRawFd`/`FromRawFd`, on Unix and WASI, and
473// `AsHandle`/`From<OwnedHandle>`/`Into<OwnedHandle>` and
474// `AsRawHandle`/`IntoRawHandle`/`FromRawHandle` on Windows.
475
476#[stable(feature = "process", since = "1.0.0")]
477impl Read for ChildStderr {
478    fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
479        self.inner.read(buf)
480    }
481
482    fn read_buf(&mut self, buf: BorrowedCursor<'_>) -> io::Result<()> {
483        self.inner.read_buf(buf)
484    }
485
486    fn read_vectored(&mut self, bufs: &mut [IoSliceMut<'_>]) -> io::Result<usize> {
487        self.inner.read_vectored(bufs)
488    }
489
490    #[inline]
491    fn is_read_vectored(&self) -> bool {
492        self.inner.is_read_vectored()
493    }
494
495    fn read_to_end(&mut self, buf: &mut Vec<u8>) -> io::Result<usize> {
496        self.inner.read_to_end(buf)
497    }
498}
499
500impl AsInner<AnonPipe> for ChildStderr {
501    #[inline]
502    fn as_inner(&self) -> &AnonPipe {
503        &self.inner
504    }
505}
506
507impl IntoInner<AnonPipe> for ChildStderr {
508    fn into_inner(self) -> AnonPipe {
509        self.inner
510    }
511}
512
513impl FromInner<AnonPipe> for ChildStderr {
514    fn from_inner(pipe: AnonPipe) -> ChildStderr {
515        ChildStderr { inner: pipe }
516    }
517}
518
519#[stable(feature = "std_debug", since = "1.16.0")]
520impl fmt::Debug for ChildStderr {
521    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
522        f.debug_struct("ChildStderr").finish_non_exhaustive()
523    }
524}
525
526/// A process builder, providing fine-grained control
527/// over how a new process should be spawned.
528///
529/// A default configuration can be
530/// generated using `Command::new(program)`, where `program` gives a path to the
531/// program to be executed. Additional builder methods allow the configuration
532/// to be changed (for example, by adding arguments) prior to spawning:
533///
534/// ```
535/// use std::process::Command;
536///
537/// let output = if cfg!(target_os = "windows") {
538///     Command::new("cmd")
539///         .args(["/C", "echo hello"])
540///         .output()
541///         .expect("failed to execute process")
542/// } else {
543///     Command::new("sh")
544///         .arg("-c")
545///         .arg("echo hello")
546///         .output()
547///         .expect("failed to execute process")
548/// };
549///
550/// let hello = output.stdout;
551/// ```
552///
553/// `Command` can be reused to spawn multiple processes. The builder methods
554/// change the command without needing to immediately spawn the process.
555///
556/// ```no_run
557/// use std::process::Command;
558///
559/// let mut echo_hello = Command::new("sh");
560/// echo_hello.arg("-c").arg("echo hello");
561/// let hello_1 = echo_hello.output().expect("failed to execute process");
562/// let hello_2 = echo_hello.output().expect("failed to execute process");
563/// ```
564///
565/// Similarly, you can call builder methods after spawning a process and then
566/// spawn a new process with the modified settings.
567///
568/// ```no_run
569/// use std::process::Command;
570///
571/// let mut list_dir = Command::new("ls");
572///
573/// // Execute `ls` in the current directory of the program.
574/// list_dir.status().expect("process failed to execute");
575///
576/// println!();
577///
578/// // Change `ls` to execute in the root directory.
579/// list_dir.current_dir("/");
580///
581/// // And then execute `ls` again but in the root directory.
582/// list_dir.status().expect("process failed to execute");
583/// ```
584#[stable(feature = "process", since = "1.0.0")]
585#[cfg_attr(not(test), rustc_diagnostic_item = "Command")]
586pub struct Command {
587    inner: imp::Command,
588}
589
590/// Allows extension traits within `std`.
591#[unstable(feature = "sealed", issue = "none")]
592impl crate::sealed::Sealed for Command {}
593
594impl Command {
595    /// Constructs a new `Command` for launching the program at
596    /// path `program`, with the following default configuration:
597    ///
598    /// * No arguments to the program
599    /// * Inherit the current process's environment
600    /// * Inherit the current process's working directory
601    /// * Inherit stdin/stdout/stderr for [`spawn`] or [`status`], but create pipes for [`output`]
602    ///
603    /// [`spawn`]: Self::spawn
604    /// [`status`]: Self::status
605    /// [`output`]: Self::output
606    ///
607    /// Builder methods are provided to change these defaults and
608    /// otherwise configure the process.
609    ///
610    /// If `program` is not an absolute path, the `PATH` will be searched in
611    /// an OS-defined way.
612    ///
613    /// The search path to be used may be controlled by setting the
614    /// `PATH` environment variable on the Command,
615    /// but this has some implementation limitations on Windows
616    /// (see issue #37519).
617    ///
618    /// # Platform-specific behavior
619    ///
620    /// Note on Windows: For executable files with the .exe extension,
621    /// it can be omitted when specifying the program for this Command.
622    /// However, if the file has a different extension,
623    /// a filename including the extension needs to be provided,
624    /// otherwise the file won't be found.
625    ///
626    /// # Examples
627    ///
628    /// ```no_run
629    /// use std::process::Command;
630    ///
631    /// Command::new("sh")
632    ///     .spawn()
633    ///     .expect("sh command failed to start");
634    /// ```
635    ///
636    /// # Caveats
637    ///
638    /// [`Command::new`] is only intended to accept the path of the program. If you pass a program
639    /// path along with arguments like `Command::new("ls -l").spawn()`, it will try to search for
640    /// `ls -l` literally. The arguments need to be passed separately, such as via [`arg`] or
641    /// [`args`].
642    ///
643    /// ```no_run
644    /// use std::process::Command;
645    ///
646    /// Command::new("ls")
647    ///     .arg("-l") // arg passed separately
648    ///     .spawn()
649    ///     .expect("ls command failed to start");
650    /// ```
651    ///
652    /// [`arg`]: Self::arg
653    /// [`args`]: Self::args
654    #[stable(feature = "process", since = "1.0.0")]
655    pub fn new<S: AsRef<OsStr>>(program: S) -> Command {
656        Command { inner: imp::Command::new(program.as_ref()) }
657    }
658
659    /// Adds an argument to pass to the program.
660    ///
661    /// Only one argument can be passed per use. So instead of:
662    ///
663    /// ```no_run
664    /// # std::process::Command::new("sh")
665    /// .arg("-C /path/to/repo")
666    /// # ;
667    /// ```
668    ///
669    /// usage would be:
670    ///
671    /// ```no_run
672    /// # std::process::Command::new("sh")
673    /// .arg("-C")
674    /// .arg("/path/to/repo")
675    /// # ;
676    /// ```
677    ///
678    /// To pass multiple arguments see [`args`].
679    ///
680    /// [`args`]: Command::args
681    ///
682    /// Note that the argument is not passed through a shell, but given
683    /// literally to the program. This means that shell syntax like quotes,
684    /// escaped characters, word splitting, glob patterns, variable substitution,
685    /// etc. have no effect.
686    ///
687    /// <div class="warning">
688    ///
689    /// On Windows, use caution with untrusted inputs. Most applications use the
690    /// standard convention for decoding arguments passed to them. These are safe to
691    /// use with `arg`. However, some applications such as `cmd.exe` and `.bat` files
692    /// use a non-standard way of decoding arguments. They are therefore vulnerable
693    /// to malicious input.
694    ///
695    /// In the case of `cmd.exe` this is especially important because a malicious
696    /// argument can potentially run arbitrary shell commands.
697    ///
698    /// See [Windows argument splitting][windows-args] for more details
699    /// or [`raw_arg`] for manually implementing non-standard argument encoding.
700    ///
701    /// [`raw_arg`]: crate::os::windows::process::CommandExt::raw_arg
702    /// [windows-args]: crate::process#windows-argument-splitting
703    ///
704    /// </div>
705    ///
706    /// # Examples
707    ///
708    /// ```no_run
709    /// use std::process::Command;
710    ///
711    /// Command::new("ls")
712    ///     .arg("-l")
713    ///     .arg("-a")
714    ///     .spawn()
715    ///     .expect("ls command failed to start");
716    /// ```
717    #[stable(feature = "process", since = "1.0.0")]
718    pub fn arg<S: AsRef<OsStr>>(&mut self, arg: S) -> &mut Command {
719        self.inner.arg(arg.as_ref());
720        self
721    }
722
723    /// Adds multiple arguments to pass to the program.
724    ///
725    /// To pass a single argument see [`arg`].
726    ///
727    /// [`arg`]: Command::arg
728    ///
729    /// Note that the arguments are not passed through a shell, but given
730    /// literally to the program. This means that shell syntax like quotes,
731    /// escaped characters, word splitting, glob patterns, variable substitution, etc.
732    /// have no effect.
733    ///
734    /// <div class="warning">
735    ///
736    /// On Windows, use caution with untrusted inputs. Most applications use the
737    /// standard convention for decoding arguments passed to them. These are safe to
738    /// use with `arg`. However, some applications such as `cmd.exe` and `.bat` files
739    /// use a non-standard way of decoding arguments. They are therefore vulnerable
740    /// to malicious input.
741    ///
742    /// In the case of `cmd.exe` this is especially important because a malicious
743    /// argument can potentially run arbitrary shell commands.
744    ///
745    /// See [Windows argument splitting][windows-args] for more details
746    /// or [`raw_arg`] for manually implementing non-standard argument encoding.
747    ///
748    /// [`raw_arg`]: crate::os::windows::process::CommandExt::raw_arg
749    /// [windows-args]: crate::process#windows-argument-splitting
750    ///
751    /// </div>
752    ///
753    /// # Examples
754    ///
755    /// ```no_run
756    /// use std::process::Command;
757    ///
758    /// Command::new("ls")
759    ///     .args(["-l", "-a"])
760    ///     .spawn()
761    ///     .expect("ls command failed to start");
762    /// ```
763    #[stable(feature = "process", since = "1.0.0")]
764    pub fn args<I, S>(&mut self, args: I) -> &mut Command
765    where
766        I: IntoIterator<Item = S>,
767        S: AsRef<OsStr>,
768    {
769        for arg in args {
770            self.arg(arg.as_ref());
771        }
772        self
773    }
774
775    /// Inserts or updates an explicit environment variable mapping.
776    ///
777    /// This method allows you to add an environment variable mapping to the spawned process or
778    /// overwrite a previously set value. You can use [`Command::envs`] to set multiple environment
779    /// variables simultaneously.
780    ///
781    /// Child processes will inherit environment variables from their parent process by default.
782    /// Environment variables explicitly set using [`Command::env`] take precedence over inherited
783    /// variables. You can disable environment variable inheritance entirely using
784    /// [`Command::env_clear`] or for a single key using [`Command::env_remove`].
785    ///
786    /// Note that environment variable names are case-insensitive (but
787    /// case-preserving) on Windows and case-sensitive on all other platforms.
788    ///
789    /// # Examples
790    ///
791    /// ```no_run
792    /// use std::process::Command;
793    ///
794    /// Command::new("ls")
795    ///     .env("PATH", "/bin")
796    ///     .spawn()
797    ///     .expect("ls command failed to start");
798    /// ```
799    #[stable(feature = "process", since = "1.0.0")]
800    pub fn env<K, V>(&mut self, key: K, val: V) -> &mut Command
801    where
802        K: AsRef<OsStr>,
803        V: AsRef<OsStr>,
804    {
805        self.inner.env_mut().set(key.as_ref(), val.as_ref());
806        self
807    }
808
809    /// Inserts or updates multiple explicit environment variable mappings.
810    ///
811    /// This method allows you to add multiple environment variable mappings to the spawned process
812    /// or overwrite previously set values. You can use [`Command::env`] to set a single environment
813    /// variable.
814    ///
815    /// Child processes will inherit environment variables from their parent process by default.
816    /// Environment variables explicitly set using [`Command::envs`] take precedence over inherited
817    /// variables. You can disable environment variable inheritance entirely using
818    /// [`Command::env_clear`] or for a single key using [`Command::env_remove`].
819    ///
820    /// Note that environment variable names are case-insensitive (but case-preserving) on Windows
821    /// and case-sensitive on all other platforms.
822    ///
823    /// # Examples
824    ///
825    /// ```no_run
826    /// use std::process::{Command, Stdio};
827    /// use std::env;
828    /// use std::collections::HashMap;
829    ///
830    /// let filtered_env : HashMap<String, String> =
831    ///     env::vars().filter(|&(ref k, _)|
832    ///         k == "TERM" || k == "TZ" || k == "LANG" || k == "PATH"
833    ///     ).collect();
834    ///
835    /// Command::new("printenv")
836    ///     .stdin(Stdio::null())
837    ///     .stdout(Stdio::inherit())
838    ///     .env_clear()
839    ///     .envs(&filtered_env)
840    ///     .spawn()
841    ///     .expect("printenv failed to start");
842    /// ```
843    #[stable(feature = "command_envs", since = "1.19.0")]
844    pub fn envs<I, K, V>(&mut self, vars: I) -> &mut Command
845    where
846        I: IntoIterator<Item = (K, V)>,
847        K: AsRef<OsStr>,
848        V: AsRef<OsStr>,
849    {
850        for (ref key, ref val) in vars {
851            self.inner.env_mut().set(key.as_ref(), val.as_ref());
852        }
853        self
854    }
855
856    /// Removes an explicitly set environment variable and prevents inheriting it from a parent
857    /// process.
858    ///
859    /// This method will remove the explicit value of an environment variable set via
860    /// [`Command::env`] or [`Command::envs`]. In addition, it will prevent the spawned child
861    /// process from inheriting that environment variable from its parent process.
862    ///
863    /// After calling [`Command::env_remove`], the value associated with its key from
864    /// [`Command::get_envs`] will be [`None`].
865    ///
866    /// To clear all explicitly set environment variables and disable all environment variable
867    /// inheritance, you can use [`Command::env_clear`].
868    ///
869    /// # Examples
870    ///
871    /// Prevent any inherited `GIT_DIR` variable from changing the target of the `git` command,
872    /// while allowing all other variables, like `GIT_AUTHOR_NAME`.
873    ///
874    /// ```no_run
875    /// use std::process::Command;
876    ///
877    /// Command::new("git")
878    ///     .arg("commit")
879    ///     .env_remove("GIT_DIR")
880    ///     .spawn()?;
881    /// # std::io::Result::Ok(())
882    /// ```
883    #[stable(feature = "process", since = "1.0.0")]
884    pub fn env_remove<K: AsRef<OsStr>>(&mut self, key: K) -> &mut Command {
885        self.inner.env_mut().remove(key.as_ref());
886        self
887    }
888
889    /// Clears all explicitly set environment variables and prevents inheriting any parent process
890    /// environment variables.
891    ///
892    /// This method will remove all explicitly added environment variables set via [`Command::env`]
893    /// or [`Command::envs`]. In addition, it will prevent the spawned child process from inheriting
894    /// any environment variable from its parent process.
895    ///
896    /// After calling [`Command::env_clear`], the iterator from [`Command::get_envs`] will be
897    /// empty.
898    ///
899    /// You can use [`Command::env_remove`] to clear a single mapping.
900    ///
901    /// # Examples
902    ///
903    /// The behavior of `sort` is affected by `LANG` and `LC_*` environment variables.
904    /// Clearing the environment makes `sort`'s behavior independent of the parent processes' language.
905    ///
906    /// ```no_run
907    /// use std::process::Command;
908    ///
909    /// Command::new("sort")
910    ///     .arg("file.txt")
911    ///     .env_clear()
912    ///     .spawn()?;
913    /// # std::io::Result::Ok(())
914    /// ```
915    #[stable(feature = "process", since = "1.0.0")]
916    pub fn env_clear(&mut self) -> &mut Command {
917        self.inner.env_mut().clear();
918        self
919    }
920
921    /// Sets the working directory for the child process.
922    ///
923    /// # Platform-specific behavior
924    ///
925    /// If the program path is relative (e.g., `"./script.sh"`), it's ambiguous
926    /// whether it should be interpreted relative to the parent's working
927    /// directory or relative to `current_dir`. The behavior in this case is
928    /// platform specific and unstable, and it's recommended to use
929    /// [`canonicalize`] to get an absolute program path instead.
930    ///
931    /// # Examples
932    ///
933    /// ```no_run
934    /// use std::process::Command;
935    ///
936    /// Command::new("ls")
937    ///     .current_dir("/bin")
938    ///     .spawn()
939    ///     .expect("ls command failed to start");
940    /// ```
941    ///
942    /// [`canonicalize`]: crate::fs::canonicalize
943    #[stable(feature = "process", since = "1.0.0")]
944    pub fn current_dir<P: AsRef<Path>>(&mut self, dir: P) -> &mut Command {
945        self.inner.cwd(dir.as_ref().as_ref());
946        self
947    }
948
949    /// Configuration for the child process's standard input (stdin) handle.
950    ///
951    /// Defaults to [`inherit`] when used with [`spawn`] or [`status`], and
952    /// defaults to [`piped`] when used with [`output`].
953    ///
954    /// [`inherit`]: Stdio::inherit
955    /// [`piped`]: Stdio::piped
956    /// [`spawn`]: Self::spawn
957    /// [`status`]: Self::status
958    /// [`output`]: Self::output
959    ///
960    /// # Examples
961    ///
962    /// ```no_run
963    /// use std::process::{Command, Stdio};
964    ///
965    /// Command::new("ls")
966    ///     .stdin(Stdio::null())
967    ///     .spawn()
968    ///     .expect("ls command failed to start");
969    /// ```
970    #[stable(feature = "process", since = "1.0.0")]
971    pub fn stdin<T: Into<Stdio>>(&mut self, cfg: T) -> &mut Command {
972        self.inner.stdin(cfg.into().0);
973        self
974    }
975
976    /// Configuration for the child process's standard output (stdout) handle.
977    ///
978    /// Defaults to [`inherit`] when used with [`spawn`] or [`status`], and
979    /// defaults to [`piped`] when used with [`output`].
980    ///
981    /// [`inherit`]: Stdio::inherit
982    /// [`piped`]: Stdio::piped
983    /// [`spawn`]: Self::spawn
984    /// [`status`]: Self::status
985    /// [`output`]: Self::output
986    ///
987    /// # Examples
988    ///
989    /// ```no_run
990    /// use std::process::{Command, Stdio};
991    ///
992    /// Command::new("ls")
993    ///     .stdout(Stdio::null())
994    ///     .spawn()
995    ///     .expect("ls command failed to start");
996    /// ```
997    #[stable(feature = "process", since = "1.0.0")]
998    pub fn stdout<T: Into<Stdio>>(&mut self, cfg: T) -> &mut Command {
999        self.inner.stdout(cfg.into().0);
1000        self
1001    }
1002
1003    /// Configuration for the child process's standard error (stderr) handle.
1004    ///
1005    /// Defaults to [`inherit`] when used with [`spawn`] or [`status`], and
1006    /// defaults to [`piped`] when used with [`output`].
1007    ///
1008    /// [`inherit`]: Stdio::inherit
1009    /// [`piped`]: Stdio::piped
1010    /// [`spawn`]: Self::spawn
1011    /// [`status`]: Self::status
1012    /// [`output`]: Self::output
1013    ///
1014    /// # Examples
1015    ///
1016    /// ```no_run
1017    /// use std::process::{Command, Stdio};
1018    ///
1019    /// Command::new("ls")
1020    ///     .stderr(Stdio::null())
1021    ///     .spawn()
1022    ///     .expect("ls command failed to start");
1023    /// ```
1024    #[stable(feature = "process", since = "1.0.0")]
1025    pub fn stderr<T: Into<Stdio>>(&mut self, cfg: T) -> &mut Command {
1026        self.inner.stderr(cfg.into().0);
1027        self
1028    }
1029
1030    /// Executes the command as a child process, returning a handle to it.
1031    ///
1032    /// By default, stdin, stdout and stderr are inherited from the parent.
1033    ///
1034    /// # Examples
1035    ///
1036    /// ```no_run
1037    /// use std::process::Command;
1038    ///
1039    /// Command::new("ls")
1040    ///     .spawn()
1041    ///     .expect("ls command failed to start");
1042    /// ```
1043    #[stable(feature = "process", since = "1.0.0")]
1044    pub fn spawn(&mut self) -> io::Result<Child> {
1045        self.inner.spawn(imp::Stdio::Inherit, true).map(Child::from_inner)
1046    }
1047
1048    /// Executes the command as a child process, waiting for it to finish and
1049    /// collecting all of its output.
1050    ///
1051    /// By default, stdout and stderr are captured (and used to provide the
1052    /// resulting output). Stdin is not inherited from the parent and any
1053    /// attempt by the child process to read from the stdin stream will result
1054    /// in the stream immediately closing.
1055    ///
1056    /// # Examples
1057    ///
1058    /// ```should_panic
1059    /// use std::process::Command;
1060    /// use std::io::{self, Write};
1061    /// let output = Command::new("/bin/cat")
1062    ///     .arg("file.txt")
1063    ///     .output()?;
1064    ///
1065    /// println!("status: {}", output.status);
1066    /// io::stdout().write_all(&output.stdout)?;
1067    /// io::stderr().write_all(&output.stderr)?;
1068    ///
1069    /// assert!(output.status.success());
1070    /// # io::Result::Ok(())
1071    /// ```
1072    #[stable(feature = "process", since = "1.0.0")]
1073    pub fn output(&mut self) -> io::Result<Output> {
1074        let (status, stdout, stderr) = imp::output(&mut self.inner)?;
1075        Ok(Output { status: ExitStatus(status), stdout, stderr })
1076    }
1077
1078    /// Executes a command as a child process, waiting for it to finish and
1079    /// collecting its status.
1080    ///
1081    /// By default, stdin, stdout and stderr are inherited from the parent.
1082    ///
1083    /// # Examples
1084    ///
1085    /// ```should_panic
1086    /// use std::process::Command;
1087    ///
1088    /// let status = Command::new("/bin/cat")
1089    ///     .arg("file.txt")
1090    ///     .status()
1091    ///     .expect("failed to execute process");
1092    ///
1093    /// println!("process finished with: {status}");
1094    ///
1095    /// assert!(status.success());
1096    /// ```
1097    #[stable(feature = "process", since = "1.0.0")]
1098    pub fn status(&mut self) -> io::Result<ExitStatus> {
1099        self.inner
1100            .spawn(imp::Stdio::Inherit, true)
1101            .map(Child::from_inner)
1102            .and_then(|mut p| p.wait())
1103    }
1104
1105    /// Returns the path to the program that was given to [`Command::new`].
1106    ///
1107    /// # Examples
1108    ///
1109    /// ```
1110    /// use std::process::Command;
1111    ///
1112    /// let cmd = Command::new("echo");
1113    /// assert_eq!(cmd.get_program(), "echo");
1114    /// ```
1115    #[must_use]
1116    #[stable(feature = "command_access", since = "1.57.0")]
1117    pub fn get_program(&self) -> &OsStr {
1118        self.inner.get_program()
1119    }
1120
1121    /// Returns an iterator of the arguments that will be passed to the program.
1122    ///
1123    /// This does not include the path to the program as the first argument;
1124    /// it only includes the arguments specified with [`Command::arg`] and
1125    /// [`Command::args`].
1126    ///
1127    /// # Examples
1128    ///
1129    /// ```
1130    /// use std::ffi::OsStr;
1131    /// use std::process::Command;
1132    ///
1133    /// let mut cmd = Command::new("echo");
1134    /// cmd.arg("first").arg("second");
1135    /// let args: Vec<&OsStr> = cmd.get_args().collect();
1136    /// assert_eq!(args, &["first", "second"]);
1137    /// ```
1138    #[stable(feature = "command_access", since = "1.57.0")]
1139    pub fn get_args(&self) -> CommandArgs<'_> {
1140        CommandArgs { inner: self.inner.get_args() }
1141    }
1142
1143    /// Returns an iterator of the environment variables explicitly set for the child process.
1144    ///
1145    /// Environment variables explicitly set using [`Command::env`], [`Command::envs`], and
1146    /// [`Command::env_remove`] can be retrieved with this method.
1147    ///
1148    /// Note that this output does not include environment variables inherited from the parent
1149    /// process.
1150    ///
1151    /// Each element is a tuple key/value pair `(&OsStr, Option<&OsStr>)`. A [`None`] value
1152    /// indicates its key was explicitly removed via [`Command::env_remove`]. The associated key for
1153    /// the [`None`] value will no longer inherit from its parent process.
1154    ///
1155    /// An empty iterator can indicate that no explicit mappings were added or that
1156    /// [`Command::env_clear`] was called. After calling [`Command::env_clear`], the child process
1157    /// will not inherit any environment variables from its parent process.
1158    ///
1159    /// # Examples
1160    ///
1161    /// ```
1162    /// use std::ffi::OsStr;
1163    /// use std::process::Command;
1164    ///
1165    /// let mut cmd = Command::new("ls");
1166    /// cmd.env("TERM", "dumb").env_remove("TZ");
1167    /// let envs: Vec<(&OsStr, Option<&OsStr>)> = cmd.get_envs().collect();
1168    /// assert_eq!(envs, &[
1169    ///     (OsStr::new("TERM"), Some(OsStr::new("dumb"))),
1170    ///     (OsStr::new("TZ"), None)
1171    /// ]);
1172    /// ```
1173    #[stable(feature = "command_access", since = "1.57.0")]
1174    pub fn get_envs(&self) -> CommandEnvs<'_> {
1175        CommandEnvs { iter: self.inner.get_envs() }
1176    }
1177
1178    /// Returns the working directory for the child process.
1179    ///
1180    /// This returns [`None`] if the working directory will not be changed.
1181    ///
1182    /// # Examples
1183    ///
1184    /// ```
1185    /// use std::path::Path;
1186    /// use std::process::Command;
1187    ///
1188    /// let mut cmd = Command::new("ls");
1189    /// assert_eq!(cmd.get_current_dir(), None);
1190    /// cmd.current_dir("/bin");
1191    /// assert_eq!(cmd.get_current_dir(), Some(Path::new("/bin")));
1192    /// ```
1193    #[must_use]
1194    #[stable(feature = "command_access", since = "1.57.0")]
1195    pub fn get_current_dir(&self) -> Option<&Path> {
1196        self.inner.get_current_dir()
1197    }
1198}
1199
1200#[stable(feature = "rust1", since = "1.0.0")]
1201impl fmt::Debug for Command {
1202    /// Format the program and arguments of a Command for display. Any
1203    /// non-utf8 data is lossily converted using the utf8 replacement
1204    /// character.
1205    ///
1206    /// The default format approximates a shell invocation of the program along with its
1207    /// arguments. It does not include most of the other command properties. The output is not guaranteed to work
1208    /// (e.g. due to lack of shell-escaping or differences in path resolution).
1209    /// On some platforms you can use [the alternate syntax] to show more fields.
1210    ///
1211    /// Note that the debug implementation is platform-specific.
1212    ///
1213    /// [the alternate syntax]: fmt#sign0
1214    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1215        self.inner.fmt(f)
1216    }
1217}
1218
1219impl AsInner<imp::Command> for Command {
1220    #[inline]
1221    fn as_inner(&self) -> &imp::Command {
1222        &self.inner
1223    }
1224}
1225
1226impl AsInnerMut<imp::Command> for Command {
1227    #[inline]
1228    fn as_inner_mut(&mut self) -> &mut imp::Command {
1229        &mut self.inner
1230    }
1231}
1232
1233/// An iterator over the command arguments.
1234///
1235/// This struct is created by [`Command::get_args`]. See its documentation for
1236/// more.
1237#[must_use = "iterators are lazy and do nothing unless consumed"]
1238#[stable(feature = "command_access", since = "1.57.0")]
1239#[derive(Debug)]
1240pub struct CommandArgs<'a> {
1241    inner: imp::CommandArgs<'a>,
1242}
1243
1244#[stable(feature = "command_access", since = "1.57.0")]
1245impl<'a> Iterator for CommandArgs<'a> {
1246    type Item = &'a OsStr;
1247    fn next(&mut self) -> Option<&'a OsStr> {
1248        self.inner.next()
1249    }
1250    fn size_hint(&self) -> (usize, Option<usize>) {
1251        self.inner.size_hint()
1252    }
1253}
1254
1255#[stable(feature = "command_access", since = "1.57.0")]
1256impl<'a> ExactSizeIterator for CommandArgs<'a> {
1257    fn len(&self) -> usize {
1258        self.inner.len()
1259    }
1260    fn is_empty(&self) -> bool {
1261        self.inner.is_empty()
1262    }
1263}
1264
1265/// An iterator over the command environment variables.
1266///
1267/// This struct is created by
1268/// [`Command::get_envs`][crate::process::Command::get_envs]. See its
1269/// documentation for more.
1270#[must_use = "iterators are lazy and do nothing unless consumed"]
1271#[stable(feature = "command_access", since = "1.57.0")]
1272pub struct CommandEnvs<'a> {
1273    iter: imp::CommandEnvs<'a>,
1274}
1275
1276#[stable(feature = "command_access", since = "1.57.0")]
1277impl<'a> Iterator for CommandEnvs<'a> {
1278    type Item = (&'a OsStr, Option<&'a OsStr>);
1279
1280    fn next(&mut self) -> Option<Self::Item> {
1281        self.iter.next()
1282    }
1283
1284    fn size_hint(&self) -> (usize, Option<usize>) {
1285        self.iter.size_hint()
1286    }
1287}
1288
1289#[stable(feature = "command_access", since = "1.57.0")]
1290impl<'a> ExactSizeIterator for CommandEnvs<'a> {
1291    fn len(&self) -> usize {
1292        self.iter.len()
1293    }
1294
1295    fn is_empty(&self) -> bool {
1296        self.iter.is_empty()
1297    }
1298}
1299
1300#[stable(feature = "command_access", since = "1.57.0")]
1301impl<'a> fmt::Debug for CommandEnvs<'a> {
1302    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1303        self.iter.fmt(f)
1304    }
1305}
1306
1307/// The output of a finished process.
1308///
1309/// This is returned in a Result by either the [`output`] method of a
1310/// [`Command`], or the [`wait_with_output`] method of a [`Child`]
1311/// process.
1312///
1313/// [`output`]: Command::output
1314/// [`wait_with_output`]: Child::wait_with_output
1315#[derive(PartialEq, Eq, Clone)]
1316#[stable(feature = "process", since = "1.0.0")]
1317pub struct Output {
1318    /// The status (exit code) of the process.
1319    #[stable(feature = "process", since = "1.0.0")]
1320    pub status: ExitStatus,
1321    /// The data that the process wrote to stdout.
1322    #[stable(feature = "process", since = "1.0.0")]
1323    pub stdout: Vec<u8>,
1324    /// The data that the process wrote to stderr.
1325    #[stable(feature = "process", since = "1.0.0")]
1326    pub stderr: Vec<u8>,
1327}
1328
1329impl Output {
1330    /// Returns an error if a nonzero exit status was received.
1331    ///
1332    /// If the [`Command`] exited successfully,
1333    /// `self` is returned.
1334    ///
1335    /// This is equivalent to calling [`exit_ok`](ExitStatus::exit_ok)
1336    /// on [`Output.status`](Output::status).
1337    ///
1338    /// Note that this will throw away the [`Output::stderr`] field in the error case.
1339    /// If the child process outputs useful informantion to stderr, you can:
1340    /// * Use `cmd.stderr(Stdio::inherit())` to forward the
1341    ///   stderr child process to the parent's stderr,
1342    ///   usually printing it to console where the user can see it.
1343    ///   This is usually correct for command-line applications.
1344    /// * Capture `stderr` using a custom error type.
1345    ///   This is usually correct for libraries.
1346    ///
1347    /// # Examples
1348    ///
1349    /// ```
1350    /// #![feature(exit_status_error)]
1351    /// # #[cfg(unix)] {
1352    /// use std::process::Command;
1353    /// assert!(Command::new("false").output().unwrap().exit_ok().is_err());
1354    /// # }
1355    /// ```
1356    #[unstable(feature = "exit_status_error", issue = "84908")]
1357    pub fn exit_ok(self) -> Result<Self, ExitStatusError> {
1358        self.status.exit_ok()?;
1359        Ok(self)
1360    }
1361}
1362
1363// If either stderr or stdout are valid utf8 strings it prints the valid
1364// strings, otherwise it prints the byte sequence instead
1365#[stable(feature = "process_output_debug", since = "1.7.0")]
1366impl fmt::Debug for Output {
1367    fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
1368        let stdout_utf8 = str::from_utf8(&self.stdout);
1369        let stdout_debug: &dyn fmt::Debug = match stdout_utf8 {
1370            Ok(ref s) => s,
1371            Err(_) => &self.stdout,
1372        };
1373
1374        let stderr_utf8 = str::from_utf8(&self.stderr);
1375        let stderr_debug: &dyn fmt::Debug = match stderr_utf8 {
1376            Ok(ref s) => s,
1377            Err(_) => &self.stderr,
1378        };
1379
1380        fmt.debug_struct("Output")
1381            .field("status", &self.status)
1382            .field("stdout", stdout_debug)
1383            .field("stderr", stderr_debug)
1384            .finish()
1385    }
1386}
1387
1388/// Describes what to do with a standard I/O stream for a child process when
1389/// passed to the [`stdin`], [`stdout`], and [`stderr`] methods of [`Command`].
1390///
1391/// [`stdin`]: Command::stdin
1392/// [`stdout`]: Command::stdout
1393/// [`stderr`]: Command::stderr
1394#[stable(feature = "process", since = "1.0.0")]
1395pub struct Stdio(imp::Stdio);
1396
1397impl Stdio {
1398    /// A new pipe should be arranged to connect the parent and child processes.
1399    ///
1400    /// # Examples
1401    ///
1402    /// With stdout:
1403    ///
1404    /// ```no_run
1405    /// use std::process::{Command, Stdio};
1406    ///
1407    /// let output = Command::new("echo")
1408    ///     .arg("Hello, world!")
1409    ///     .stdout(Stdio::piped())
1410    ///     .output()
1411    ///     .expect("Failed to execute command");
1412    ///
1413    /// assert_eq!(String::from_utf8_lossy(&output.stdout), "Hello, world!\n");
1414    /// // Nothing echoed to console
1415    /// ```
1416    ///
1417    /// With stdin:
1418    ///
1419    /// ```no_run
1420    /// use std::io::Write;
1421    /// use std::process::{Command, Stdio};
1422    ///
1423    /// let mut child = Command::new("rev")
1424    ///     .stdin(Stdio::piped())
1425    ///     .stdout(Stdio::piped())
1426    ///     .spawn()
1427    ///     .expect("Failed to spawn child process");
1428    ///
1429    /// let mut stdin = child.stdin.take().expect("Failed to open stdin");
1430    /// std::thread::spawn(move || {
1431    ///     stdin.write_all("Hello, world!".as_bytes()).expect("Failed to write to stdin");
1432    /// });
1433    ///
1434    /// let output = child.wait_with_output().expect("Failed to read stdout");
1435    /// assert_eq!(String::from_utf8_lossy(&output.stdout), "!dlrow ,olleH");
1436    /// ```
1437    ///
1438    /// Writing more than a pipe buffer's worth of input to stdin without also reading
1439    /// stdout and stderr at the same time may cause a deadlock.
1440    /// This is an issue when running any program that doesn't guarantee that it reads
1441    /// its entire stdin before writing more than a pipe buffer's worth of output.
1442    /// The size of a pipe buffer varies on different targets.
1443    ///
1444    #[must_use]
1445    #[stable(feature = "process", since = "1.0.0")]
1446    pub fn piped() -> Stdio {
1447        Stdio(imp::Stdio::MakePipe)
1448    }
1449
1450    /// The child inherits from the corresponding parent descriptor.
1451    ///
1452    /// # Examples
1453    ///
1454    /// With stdout:
1455    ///
1456    /// ```no_run
1457    /// use std::process::{Command, Stdio};
1458    ///
1459    /// let output = Command::new("echo")
1460    ///     .arg("Hello, world!")
1461    ///     .stdout(Stdio::inherit())
1462    ///     .output()
1463    ///     .expect("Failed to execute command");
1464    ///
1465    /// assert_eq!(String::from_utf8_lossy(&output.stdout), "");
1466    /// // "Hello, world!" echoed to console
1467    /// ```
1468    ///
1469    /// With stdin:
1470    ///
1471    /// ```no_run
1472    /// use std::process::{Command, Stdio};
1473    /// use std::io::{self, Write};
1474    ///
1475    /// let output = Command::new("rev")
1476    ///     .stdin(Stdio::inherit())
1477    ///     .stdout(Stdio::piped())
1478    ///     .output()?;
1479    ///
1480    /// print!("You piped in the reverse of: ");
1481    /// io::stdout().write_all(&output.stdout)?;
1482    /// # io::Result::Ok(())
1483    /// ```
1484    #[must_use]
1485    #[stable(feature = "process", since = "1.0.0")]
1486    pub fn inherit() -> Stdio {
1487        Stdio(imp::Stdio::Inherit)
1488    }
1489
1490    /// This stream will be ignored. This is the equivalent of attaching the
1491    /// stream to `/dev/null`.
1492    ///
1493    /// # Examples
1494    ///
1495    /// With stdout:
1496    ///
1497    /// ```no_run
1498    /// use std::process::{Command, Stdio};
1499    ///
1500    /// let output = Command::new("echo")
1501    ///     .arg("Hello, world!")
1502    ///     .stdout(Stdio::null())
1503    ///     .output()
1504    ///     .expect("Failed to execute command");
1505    ///
1506    /// assert_eq!(String::from_utf8_lossy(&output.stdout), "");
1507    /// // Nothing echoed to console
1508    /// ```
1509    ///
1510    /// With stdin:
1511    ///
1512    /// ```no_run
1513    /// use std::process::{Command, Stdio};
1514    ///
1515    /// let output = Command::new("rev")
1516    ///     .stdin(Stdio::null())
1517    ///     .stdout(Stdio::piped())
1518    ///     .output()
1519    ///     .expect("Failed to execute command");
1520    ///
1521    /// assert_eq!(String::from_utf8_lossy(&output.stdout), "");
1522    /// // Ignores any piped-in input
1523    /// ```
1524    #[must_use]
1525    #[stable(feature = "process", since = "1.0.0")]
1526    pub fn null() -> Stdio {
1527        Stdio(imp::Stdio::Null)
1528    }
1529
1530    /// Returns `true` if this requires [`Command`] to create a new pipe.
1531    ///
1532    /// # Example
1533    ///
1534    /// ```
1535    /// #![feature(stdio_makes_pipe)]
1536    /// use std::process::Stdio;
1537    ///
1538    /// let io = Stdio::piped();
1539    /// assert_eq!(io.makes_pipe(), true);
1540    /// ```
1541    #[unstable(feature = "stdio_makes_pipe", issue = "98288")]
1542    pub fn makes_pipe(&self) -> bool {
1543        matches!(self.0, imp::Stdio::MakePipe)
1544    }
1545}
1546
1547impl FromInner<imp::Stdio> for Stdio {
1548    fn from_inner(inner: imp::Stdio) -> Stdio {
1549        Stdio(inner)
1550    }
1551}
1552
1553#[stable(feature = "std_debug", since = "1.16.0")]
1554impl fmt::Debug for Stdio {
1555    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1556        f.debug_struct("Stdio").finish_non_exhaustive()
1557    }
1558}
1559
1560#[stable(feature = "stdio_from", since = "1.20.0")]
1561impl From<ChildStdin> for Stdio {
1562    /// Converts a [`ChildStdin`] into a [`Stdio`].
1563    ///
1564    /// # Examples
1565    ///
1566    /// `ChildStdin` will be converted to `Stdio` using `Stdio::from` under the hood.
1567    ///
1568    /// ```rust,no_run
1569    /// use std::process::{Command, Stdio};
1570    ///
1571    /// let reverse = Command::new("rev")
1572    ///     .stdin(Stdio::piped())
1573    ///     .spawn()
1574    ///     .expect("failed reverse command");
1575    ///
1576    /// let _echo = Command::new("echo")
1577    ///     .arg("Hello, world!")
1578    ///     .stdout(reverse.stdin.unwrap()) // Converted into a Stdio here
1579    ///     .output()
1580    ///     .expect("failed echo command");
1581    ///
1582    /// // "!dlrow ,olleH" echoed to console
1583    /// ```
1584    fn from(child: ChildStdin) -> Stdio {
1585        Stdio::from_inner(child.into_inner().into())
1586    }
1587}
1588
1589#[stable(feature = "stdio_from", since = "1.20.0")]
1590impl From<ChildStdout> for Stdio {
1591    /// Converts a [`ChildStdout`] into a [`Stdio`].
1592    ///
1593    /// # Examples
1594    ///
1595    /// `ChildStdout` will be converted to `Stdio` using `Stdio::from` under the hood.
1596    ///
1597    /// ```rust,no_run
1598    /// use std::process::{Command, Stdio};
1599    ///
1600    /// let hello = Command::new("echo")
1601    ///     .arg("Hello, world!")
1602    ///     .stdout(Stdio::piped())
1603    ///     .spawn()
1604    ///     .expect("failed echo command");
1605    ///
1606    /// let reverse = Command::new("rev")
1607    ///     .stdin(hello.stdout.unwrap())  // Converted into a Stdio here
1608    ///     .output()
1609    ///     .expect("failed reverse command");
1610    ///
1611    /// assert_eq!(reverse.stdout, b"!dlrow ,olleH\n");
1612    /// ```
1613    fn from(child: ChildStdout) -> Stdio {
1614        Stdio::from_inner(child.into_inner().into())
1615    }
1616}
1617
1618#[stable(feature = "stdio_from", since = "1.20.0")]
1619impl From<ChildStderr> for Stdio {
1620    /// Converts a [`ChildStderr`] into a [`Stdio`].
1621    ///
1622    /// # Examples
1623    ///
1624    /// ```rust,no_run
1625    /// use std::process::{Command, Stdio};
1626    ///
1627    /// let reverse = Command::new("rev")
1628    ///     .arg("non_existing_file.txt")
1629    ///     .stderr(Stdio::piped())
1630    ///     .spawn()
1631    ///     .expect("failed reverse command");
1632    ///
1633    /// let cat = Command::new("cat")
1634    ///     .arg("-")
1635    ///     .stdin(reverse.stderr.unwrap()) // Converted into a Stdio here
1636    ///     .output()
1637    ///     .expect("failed echo command");
1638    ///
1639    /// assert_eq!(
1640    ///     String::from_utf8_lossy(&cat.stdout),
1641    ///     "rev: cannot open non_existing_file.txt: No such file or directory\n"
1642    /// );
1643    /// ```
1644    fn from(child: ChildStderr) -> Stdio {
1645        Stdio::from_inner(child.into_inner().into())
1646    }
1647}
1648
1649#[stable(feature = "stdio_from", since = "1.20.0")]
1650impl From<fs::File> for Stdio {
1651    /// Converts a [`File`](fs::File) into a [`Stdio`].
1652    ///
1653    /// # Examples
1654    ///
1655    /// `File` will be converted to `Stdio` using `Stdio::from` under the hood.
1656    ///
1657    /// ```rust,no_run
1658    /// use std::fs::File;
1659    /// use std::process::Command;
1660    ///
1661    /// // With the `foo.txt` file containing "Hello, world!"
1662    /// let file = File::open("foo.txt")?;
1663    ///
1664    /// let reverse = Command::new("rev")
1665    ///     .stdin(file)  // Implicit File conversion into a Stdio
1666    ///     .output()?;
1667    ///
1668    /// assert_eq!(reverse.stdout, b"!dlrow ,olleH");
1669    /// # std::io::Result::Ok(())
1670    /// ```
1671    fn from(file: fs::File) -> Stdio {
1672        Stdio::from_inner(file.into_inner().into())
1673    }
1674}
1675
1676#[stable(feature = "stdio_from_stdio", since = "1.74.0")]
1677impl From<io::Stdout> for Stdio {
1678    /// Redirect command stdout/stderr to our stdout
1679    ///
1680    /// # Examples
1681    ///
1682    /// ```rust
1683    /// #![feature(exit_status_error)]
1684    /// use std::io;
1685    /// use std::process::Command;
1686    ///
1687    /// # fn test() -> Result<(), Box<dyn std::error::Error>> {
1688    /// let output = Command::new("whoami")
1689    // "whoami" is a command which exists on both Unix and Windows,
1690    // and which succeeds, producing some stdout output but no stderr.
1691    ///     .stdout(io::stdout())
1692    ///     .output()?;
1693    /// output.status.exit_ok()?;
1694    /// assert!(output.stdout.is_empty());
1695    /// # Ok(())
1696    /// # }
1697    /// #
1698    /// # if cfg!(unix) {
1699    /// #     test().unwrap();
1700    /// # }
1701    /// ```
1702    fn from(inherit: io::Stdout) -> Stdio {
1703        Stdio::from_inner(inherit.into())
1704    }
1705}
1706
1707#[stable(feature = "stdio_from_stdio", since = "1.74.0")]
1708impl From<io::Stderr> for Stdio {
1709    /// Redirect command stdout/stderr to our stderr
1710    ///
1711    /// # Examples
1712    ///
1713    /// ```rust
1714    /// #![feature(exit_status_error)]
1715    /// use std::io;
1716    /// use std::process::Command;
1717    ///
1718    /// # fn test() -> Result<(), Box<dyn std::error::Error>> {
1719    /// let output = Command::new("whoami")
1720    ///     .stdout(io::stderr())
1721    ///     .output()?;
1722    /// output.status.exit_ok()?;
1723    /// assert!(output.stdout.is_empty());
1724    /// # Ok(())
1725    /// # }
1726    /// #
1727    /// # if cfg!(unix) {
1728    /// #     test().unwrap();
1729    /// # }
1730    /// ```
1731    fn from(inherit: io::Stderr) -> Stdio {
1732        Stdio::from_inner(inherit.into())
1733    }
1734}
1735
1736#[stable(feature = "anonymous_pipe", since = "1.87.0")]
1737impl From<io::PipeWriter> for Stdio {
1738    fn from(pipe: io::PipeWriter) -> Self {
1739        Stdio::from_inner(pipe.into_inner().into())
1740    }
1741}
1742
1743#[stable(feature = "anonymous_pipe", since = "1.87.0")]
1744impl From<io::PipeReader> for Stdio {
1745    fn from(pipe: io::PipeReader) -> Self {
1746        Stdio::from_inner(pipe.into_inner().into())
1747    }
1748}
1749
1750/// Describes the result of a process after it has terminated.
1751///
1752/// This `struct` is used to represent the exit status or other termination of a child process.
1753/// Child processes are created via the [`Command`] struct and their exit
1754/// status is exposed through the [`status`] method, or the [`wait`] method
1755/// of a [`Child`] process.
1756///
1757/// An `ExitStatus` represents every possible disposition of a process.  On Unix this
1758/// is the **wait status**.  It is *not* simply an *exit status* (a value passed to `exit`).
1759///
1760/// For proper error reporting of failed processes, print the value of `ExitStatus` or
1761/// `ExitStatusError` using their implementations of [`Display`](crate::fmt::Display).
1762///
1763/// # Differences from `ExitCode`
1764///
1765/// [`ExitCode`] is intended for terminating the currently running process, via
1766/// the `Termination` trait, in contrast to `ExitStatus`, which represents the
1767/// termination of a child process. These APIs are separate due to platform
1768/// compatibility differences and their expected usage; it is not generally
1769/// possible to exactly reproduce an `ExitStatus` from a child for the current
1770/// process after the fact.
1771///
1772/// [`status`]: Command::status
1773/// [`wait`]: Child::wait
1774//
1775// We speak slightly loosely (here and in various other places in the stdlib docs) about `exit`
1776// vs `_exit`.  Naming of Unix system calls is not standardised across Unices, so terminology is a
1777// matter of convention and tradition.  For clarity we usually speak of `exit`, even when we might
1778// mean an underlying system call such as `_exit`.
1779#[derive(PartialEq, Eq, Clone, Copy, Debug)]
1780#[stable(feature = "process", since = "1.0.0")]
1781pub struct ExitStatus(imp::ExitStatus);
1782
1783/// The default value is one which indicates successful completion.
1784#[stable(feature = "process_exitstatus_default", since = "1.73.0")]
1785impl Default for ExitStatus {
1786    fn default() -> Self {
1787        // Ideally this would be done by ExitCode::default().into() but that is complicated.
1788        ExitStatus::from_inner(imp::ExitStatus::default())
1789    }
1790}
1791
1792/// Allows extension traits within `std`.
1793#[unstable(feature = "sealed", issue = "none")]
1794impl crate::sealed::Sealed for ExitStatus {}
1795
1796impl ExitStatus {
1797    /// Was termination successful?  Returns a `Result`.
1798    ///
1799    /// # Examples
1800    ///
1801    /// ```
1802    /// #![feature(exit_status_error)]
1803    /// # if cfg!(unix) {
1804    /// use std::process::Command;
1805    ///
1806    /// let status = Command::new("ls")
1807    ///     .arg("/dev/nonexistent")
1808    ///     .status()
1809    ///     .expect("ls could not be executed");
1810    ///
1811    /// println!("ls: {status}");
1812    /// status.exit_ok().expect_err("/dev/nonexistent could be listed!");
1813    /// # } // cfg!(unix)
1814    /// ```
1815    #[unstable(feature = "exit_status_error", issue = "84908")]
1816    pub fn exit_ok(&self) -> Result<(), ExitStatusError> {
1817        self.0.exit_ok().map_err(ExitStatusError)
1818    }
1819
1820    /// Was termination successful? Signal termination is not considered a
1821    /// success, and success is defined as a zero exit status.
1822    ///
1823    /// # Examples
1824    ///
1825    /// ```rust,no_run
1826    /// use std::process::Command;
1827    ///
1828    /// let status = Command::new("mkdir")
1829    ///     .arg("projects")
1830    ///     .status()
1831    ///     .expect("failed to execute mkdir");
1832    ///
1833    /// if status.success() {
1834    ///     println!("'projects/' directory created");
1835    /// } else {
1836    ///     println!("failed to create 'projects/' directory: {status}");
1837    /// }
1838    /// ```
1839    #[must_use]
1840    #[stable(feature = "process", since = "1.0.0")]
1841    pub fn success(&self) -> bool {
1842        self.0.exit_ok().is_ok()
1843    }
1844
1845    /// Returns the exit code of the process, if any.
1846    ///
1847    /// In Unix terms the return value is the **exit status**: the value passed to `exit`, if the
1848    /// process finished by calling `exit`.  Note that on Unix the exit status is truncated to 8
1849    /// bits, and that values that didn't come from a program's call to `exit` may be invented by the
1850    /// runtime system (often, for example, 255, 254, 127 or 126).
1851    ///
1852    /// On Unix, this will return `None` if the process was terminated by a signal.
1853    /// [`ExitStatusExt`](crate::os::unix::process::ExitStatusExt) is an
1854    /// extension trait for extracting any such signal, and other details, from the `ExitStatus`.
1855    ///
1856    /// # Examples
1857    ///
1858    /// ```no_run
1859    /// use std::process::Command;
1860    ///
1861    /// let status = Command::new("mkdir")
1862    ///     .arg("projects")
1863    ///     .status()
1864    ///     .expect("failed to execute mkdir");
1865    ///
1866    /// match status.code() {
1867    ///     Some(code) => println!("Exited with status code: {code}"),
1868    ///     None => println!("Process terminated by signal")
1869    /// }
1870    /// ```
1871    #[must_use]
1872    #[stable(feature = "process", since = "1.0.0")]
1873    pub fn code(&self) -> Option<i32> {
1874        self.0.code()
1875    }
1876}
1877
1878impl AsInner<imp::ExitStatus> for ExitStatus {
1879    #[inline]
1880    fn as_inner(&self) -> &imp::ExitStatus {
1881        &self.0
1882    }
1883}
1884
1885impl FromInner<imp::ExitStatus> for ExitStatus {
1886    fn from_inner(s: imp::ExitStatus) -> ExitStatus {
1887        ExitStatus(s)
1888    }
1889}
1890
1891#[stable(feature = "process", since = "1.0.0")]
1892impl fmt::Display for ExitStatus {
1893    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1894        self.0.fmt(f)
1895    }
1896}
1897
1898/// Allows extension traits within `std`.
1899#[unstable(feature = "sealed", issue = "none")]
1900impl crate::sealed::Sealed for ExitStatusError {}
1901
1902/// Describes the result of a process after it has failed
1903///
1904/// Produced by the [`.exit_ok`](ExitStatus::exit_ok) method on [`ExitStatus`].
1905///
1906/// # Examples
1907///
1908/// ```
1909/// #![feature(exit_status_error)]
1910/// # if cfg!(unix) {
1911/// use std::process::{Command, ExitStatusError};
1912///
1913/// fn run(cmd: &str) -> Result<(), ExitStatusError> {
1914///     Command::new(cmd).status().unwrap().exit_ok()?;
1915///     Ok(())
1916/// }
1917///
1918/// run("true").unwrap();
1919/// run("false").unwrap_err();
1920/// # } // cfg!(unix)
1921/// ```
1922#[derive(PartialEq, Eq, Clone, Copy, Debug)]
1923#[unstable(feature = "exit_status_error", issue = "84908")]
1924// The definition of imp::ExitStatusError should ideally be such that
1925// Result<(), imp::ExitStatusError> has an identical representation to imp::ExitStatus.
1926pub struct ExitStatusError(imp::ExitStatusError);
1927
1928#[unstable(feature = "exit_status_error", issue = "84908")]
1929impl ExitStatusError {
1930    /// Reports the exit code, if applicable, from an `ExitStatusError`.
1931    ///
1932    /// In Unix terms the return value is the **exit status**: the value passed to `exit`, if the
1933    /// process finished by calling `exit`.  Note that on Unix the exit status is truncated to 8
1934    /// bits, and that values that didn't come from a program's call to `exit` may be invented by the
1935    /// runtime system (often, for example, 255, 254, 127 or 126).
1936    ///
1937    /// On Unix, this will return `None` if the process was terminated by a signal.  If you want to
1938    /// handle such situations specially, consider using methods from
1939    /// [`ExitStatusExt`](crate::os::unix::process::ExitStatusExt).
1940    ///
1941    /// If the process finished by calling `exit` with a nonzero value, this will return
1942    /// that exit status.
1943    ///
1944    /// If the error was something else, it will return `None`.
1945    ///
1946    /// If the process exited successfully (ie, by calling `exit(0)`), there is no
1947    /// `ExitStatusError`.  So the return value from `ExitStatusError::code()` is always nonzero.
1948    ///
1949    /// # Examples
1950    ///
1951    /// ```
1952    /// #![feature(exit_status_error)]
1953    /// # #[cfg(unix)] {
1954    /// use std::process::Command;
1955    ///
1956    /// let bad = Command::new("false").status().unwrap().exit_ok().unwrap_err();
1957    /// assert_eq!(bad.code(), Some(1));
1958    /// # } // #[cfg(unix)]
1959    /// ```
1960    #[must_use]
1961    pub fn code(&self) -> Option<i32> {
1962        self.code_nonzero().map(Into::into)
1963    }
1964
1965    /// Reports the exit code, if applicable, from an `ExitStatusError`, as a [`NonZero`].
1966    ///
1967    /// This is exactly like [`code()`](Self::code), except that it returns a <code>[NonZero]<[i32]></code>.
1968    ///
1969    /// Plain `code`, returning a plain integer, is provided because it is often more convenient.
1970    /// The returned value from `code()` is indeed also nonzero; use `code_nonzero()` when you want
1971    /// a type-level guarantee of nonzeroness.
1972    ///
1973    /// # Examples
1974    ///
1975    /// ```
1976    /// #![feature(exit_status_error)]
1977    ///
1978    /// # if cfg!(unix) {
1979    /// use std::num::NonZero;
1980    /// use std::process::Command;
1981    ///
1982    /// let bad = Command::new("false").status().unwrap().exit_ok().unwrap_err();
1983    /// assert_eq!(bad.code_nonzero().unwrap(), NonZero::new(1).unwrap());
1984    /// # } // cfg!(unix)
1985    /// ```
1986    #[must_use]
1987    pub fn code_nonzero(&self) -> Option<NonZero<i32>> {
1988        self.0.code()
1989    }
1990
1991    /// Converts an `ExitStatusError` (back) to an `ExitStatus`.
1992    #[must_use]
1993    pub fn into_status(&self) -> ExitStatus {
1994        ExitStatus(self.0.into())
1995    }
1996}
1997
1998#[unstable(feature = "exit_status_error", issue = "84908")]
1999impl From<ExitStatusError> for ExitStatus {
2000    fn from(error: ExitStatusError) -> Self {
2001        Self(error.0.into())
2002    }
2003}
2004
2005#[unstable(feature = "exit_status_error", issue = "84908")]
2006impl fmt::Display for ExitStatusError {
2007    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
2008        write!(f, "process exited unsuccessfully: {}", self.into_status())
2009    }
2010}
2011
2012#[unstable(feature = "exit_status_error", issue = "84908")]
2013impl crate::error::Error for ExitStatusError {}
2014
2015/// This type represents the status code the current process can return
2016/// to its parent under normal termination.
2017///
2018/// `ExitCode` is intended to be consumed only by the standard library (via
2019/// [`Termination::report()`]). For forwards compatibility with potentially
2020/// unusual targets, this type currently does not provide `Eq`, `Hash`, or
2021/// access to the raw value. This type does provide `PartialEq` for
2022/// comparison, but note that there may potentially be multiple failure
2023/// codes, some of which will _not_ compare equal to `ExitCode::FAILURE`.
2024/// The standard library provides the canonical `SUCCESS` and `FAILURE`
2025/// exit codes as well as `From<u8> for ExitCode` for constructing other
2026/// arbitrary exit codes.
2027///
2028/// # Portability
2029///
2030/// Numeric values used in this type don't have portable meanings, and
2031/// different platforms may mask different amounts of them.
2032///
2033/// For the platform's canonical successful and unsuccessful codes, see
2034/// the [`SUCCESS`] and [`FAILURE`] associated items.
2035///
2036/// [`SUCCESS`]: ExitCode::SUCCESS
2037/// [`FAILURE`]: ExitCode::FAILURE
2038///
2039/// # Differences from `ExitStatus`
2040///
2041/// `ExitCode` is intended for terminating the currently running process, via
2042/// the `Termination` trait, in contrast to [`ExitStatus`], which represents the
2043/// termination of a child process. These APIs are separate due to platform
2044/// compatibility differences and their expected usage; it is not generally
2045/// possible to exactly reproduce an `ExitStatus` from a child for the current
2046/// process after the fact.
2047///
2048/// # Examples
2049///
2050/// `ExitCode` can be returned from the `main` function of a crate, as it implements
2051/// [`Termination`]:
2052///
2053/// ```
2054/// use std::process::ExitCode;
2055/// # fn check_foo() -> bool { true }
2056///
2057/// fn main() -> ExitCode {
2058///     if !check_foo() {
2059///         return ExitCode::from(42);
2060///     }
2061///
2062///     ExitCode::SUCCESS
2063/// }
2064/// ```
2065#[derive(Clone, Copy, Debug, PartialEq)]
2066#[stable(feature = "process_exitcode", since = "1.61.0")]
2067pub struct ExitCode(imp::ExitCode);
2068
2069/// Allows extension traits within `std`.
2070#[unstable(feature = "sealed", issue = "none")]
2071impl crate::sealed::Sealed for ExitCode {}
2072
2073#[stable(feature = "process_exitcode", since = "1.61.0")]
2074impl ExitCode {
2075    /// The canonical `ExitCode` for successful termination on this platform.
2076    ///
2077    /// Note that a `()`-returning `main` implicitly results in a successful
2078    /// termination, so there's no need to return this from `main` unless
2079    /// you're also returning other possible codes.
2080    #[stable(feature = "process_exitcode", since = "1.61.0")]
2081    pub const SUCCESS: ExitCode = ExitCode(imp::ExitCode::SUCCESS);
2082
2083    /// The canonical `ExitCode` for unsuccessful termination on this platform.
2084    ///
2085    /// If you're only returning this and `SUCCESS` from `main`, consider
2086    /// instead returning `Err(_)` and `Ok(())` respectively, which will
2087    /// return the same codes (but will also `eprintln!` the error).
2088    #[stable(feature = "process_exitcode", since = "1.61.0")]
2089    pub const FAILURE: ExitCode = ExitCode(imp::ExitCode::FAILURE);
2090
2091    /// Exit the current process with the given `ExitCode`.
2092    ///
2093    /// Note that this has the same caveats as [`process::exit()`][exit], namely that this function
2094    /// terminates the process immediately, so no destructors on the current stack or any other
2095    /// thread's stack will be run. Also see those docs for some important notes on interop with C
2096    /// code. If a clean shutdown is needed, it is recommended to simply return this ExitCode from
2097    /// the `main` function, as demonstrated in the [type documentation](#examples).
2098    ///
2099    /// # Differences from `process::exit()`
2100    ///
2101    /// `process::exit()` accepts any `i32` value as the exit code for the process; however, there
2102    /// are platforms that only use a subset of that value (see [`process::exit` platform-specific
2103    /// behavior][exit#platform-specific-behavior]). `ExitCode` exists because of this; only
2104    /// `ExitCode`s that are supported by a majority of our platforms can be created, so those
2105    /// problems don't exist (as much) with this method.
2106    ///
2107    /// # Examples
2108    ///
2109    /// ```
2110    /// #![feature(exitcode_exit_method)]
2111    /// # use std::process::ExitCode;
2112    /// # use std::fmt;
2113    /// # enum UhOhError { GenericProblem, Specific, WithCode { exit_code: ExitCode, _x: () } }
2114    /// # impl fmt::Display for UhOhError {
2115    /// #     fn fmt(&self, _: &mut fmt::Formatter<'_>) -> fmt::Result { unimplemented!() }
2116    /// # }
2117    /// // there's no way to gracefully recover from an UhOhError, so we just
2118    /// // print a message and exit
2119    /// fn handle_unrecoverable_error(err: UhOhError) -> ! {
2120    ///     eprintln!("UH OH! {err}");
2121    ///     let code = match err {
2122    ///         UhOhError::GenericProblem => ExitCode::FAILURE,
2123    ///         UhOhError::Specific => ExitCode::from(3),
2124    ///         UhOhError::WithCode { exit_code, .. } => exit_code,
2125    ///     };
2126    ///     code.exit_process()
2127    /// }
2128    /// ```
2129    #[unstable(feature = "exitcode_exit_method", issue = "97100")]
2130    pub fn exit_process(self) -> ! {
2131        exit(self.to_i32())
2132    }
2133}
2134
2135impl ExitCode {
2136    // This is private/perma-unstable because ExitCode is opaque; we don't know that i32 will serve
2137    // all usecases, for example windows seems to use u32, unix uses the 8-15th bits of an i32, we
2138    // likely want to isolate users anything that could restrict the platform specific
2139    // representation of an ExitCode
2140    //
2141    // More info: https://internals.rust-lang.org/t/mini-pre-rfc-redesigning-process-exitstatus/5426
2142    /// Converts an `ExitCode` into an i32
2143    #[unstable(
2144        feature = "process_exitcode_internals",
2145        reason = "exposed only for libstd",
2146        issue = "none"
2147    )]
2148    #[inline]
2149    #[doc(hidden)]
2150    pub fn to_i32(self) -> i32 {
2151        self.0.as_i32()
2152    }
2153}
2154
2155/// The default value is [`ExitCode::SUCCESS`]
2156#[stable(feature = "process_exitcode_default", since = "1.75.0")]
2157impl Default for ExitCode {
2158    fn default() -> Self {
2159        ExitCode::SUCCESS
2160    }
2161}
2162
2163#[stable(feature = "process_exitcode", since = "1.61.0")]
2164impl From<u8> for ExitCode {
2165    /// Constructs an `ExitCode` from an arbitrary u8 value.
2166    fn from(code: u8) -> Self {
2167        ExitCode(imp::ExitCode::from(code))
2168    }
2169}
2170
2171impl AsInner<imp::ExitCode> for ExitCode {
2172    #[inline]
2173    fn as_inner(&self) -> &imp::ExitCode {
2174        &self.0
2175    }
2176}
2177
2178impl FromInner<imp::ExitCode> for ExitCode {
2179    fn from_inner(s: imp::ExitCode) -> ExitCode {
2180        ExitCode(s)
2181    }
2182}
2183
2184impl Child {
2185    /// Forces the child process to exit. If the child has already exited, `Ok(())`
2186    /// is returned.
2187    ///
2188    /// The mapping to [`ErrorKind`]s is not part of the compatibility contract of the function.
2189    ///
2190    /// This is equivalent to sending a SIGKILL on Unix platforms.
2191    ///
2192    /// # Examples
2193    ///
2194    /// ```no_run
2195    /// use std::process::Command;
2196    ///
2197    /// let mut command = Command::new("yes");
2198    /// if let Ok(mut child) = command.spawn() {
2199    ///     child.kill().expect("command couldn't be killed");
2200    /// } else {
2201    ///     println!("yes command didn't start");
2202    /// }
2203    /// ```
2204    ///
2205    /// [`ErrorKind`]: io::ErrorKind
2206    /// [`InvalidInput`]: io::ErrorKind::InvalidInput
2207    #[stable(feature = "process", since = "1.0.0")]
2208    #[cfg_attr(not(test), rustc_diagnostic_item = "child_kill")]
2209    pub fn kill(&mut self) -> io::Result<()> {
2210        self.handle.kill()
2211    }
2212
2213    /// Returns the OS-assigned process identifier associated with this child.
2214    ///
2215    /// # Examples
2216    ///
2217    /// ```no_run
2218    /// use std::process::Command;
2219    ///
2220    /// let mut command = Command::new("ls");
2221    /// if let Ok(child) = command.spawn() {
2222    ///     println!("Child's ID is {}", child.id());
2223    /// } else {
2224    ///     println!("ls command didn't start");
2225    /// }
2226    /// ```
2227    #[must_use]
2228    #[stable(feature = "process_id", since = "1.3.0")]
2229    #[cfg_attr(not(test), rustc_diagnostic_item = "child_id")]
2230    pub fn id(&self) -> u32 {
2231        self.handle.id()
2232    }
2233
2234    /// Waits for the child to exit completely, returning the status that it
2235    /// exited with. This function will continue to have the same return value
2236    /// after it has been called at least once.
2237    ///
2238    /// The stdin handle to the child process, if any, will be closed
2239    /// before waiting. This helps avoid deadlock: it ensures that the
2240    /// child does not block waiting for input from the parent, while
2241    /// the parent waits for the child to exit.
2242    ///
2243    /// # Examples
2244    ///
2245    /// ```no_run
2246    /// use std::process::Command;
2247    ///
2248    /// let mut command = Command::new("ls");
2249    /// if let Ok(mut child) = command.spawn() {
2250    ///     child.wait().expect("command wasn't running");
2251    ///     println!("Child has finished its execution!");
2252    /// } else {
2253    ///     println!("ls command didn't start");
2254    /// }
2255    /// ```
2256    #[stable(feature = "process", since = "1.0.0")]
2257    pub fn wait(&mut self) -> io::Result<ExitStatus> {
2258        drop(self.stdin.take());
2259        self.handle.wait().map(ExitStatus)
2260    }
2261
2262    /// Attempts to collect the exit status of the child if it has already
2263    /// exited.
2264    ///
2265    /// This function will not block the calling thread and will only
2266    /// check to see if the child process has exited or not. If the child has
2267    /// exited then on Unix the process ID is reaped. This function is
2268    /// guaranteed to repeatedly return a successful exit status so long as the
2269    /// child has already exited.
2270    ///
2271    /// If the child has exited, then `Ok(Some(status))` is returned. If the
2272    /// exit status is not available at this time then `Ok(None)` is returned.
2273    /// If an error occurs, then that error is returned.
2274    ///
2275    /// Note that unlike `wait`, this function will not attempt to drop stdin.
2276    ///
2277    /// # Examples
2278    ///
2279    /// ```no_run
2280    /// use std::process::Command;
2281    ///
2282    /// let mut child = Command::new("ls").spawn()?;
2283    ///
2284    /// match child.try_wait() {
2285    ///     Ok(Some(status)) => println!("exited with: {status}"),
2286    ///     Ok(None) => {
2287    ///         println!("status not ready yet, let's really wait");
2288    ///         let res = child.wait();
2289    ///         println!("result: {res:?}");
2290    ///     }
2291    ///     Err(e) => println!("error attempting to wait: {e}"),
2292    /// }
2293    /// # std::io::Result::Ok(())
2294    /// ```
2295    #[stable(feature = "process_try_wait", since = "1.18.0")]
2296    pub fn try_wait(&mut self) -> io::Result<Option<ExitStatus>> {
2297        Ok(self.handle.try_wait()?.map(ExitStatus))
2298    }
2299
2300    /// Simultaneously waits for the child to exit and collect all remaining
2301    /// output on the stdout/stderr handles, returning an `Output`
2302    /// instance.
2303    ///
2304    /// The stdin handle to the child process, if any, will be closed
2305    /// before waiting. This helps avoid deadlock: it ensures that the
2306    /// child does not block waiting for input from the parent, while
2307    /// the parent waits for the child to exit.
2308    ///
2309    /// By default, stdin, stdout and stderr are inherited from the parent.
2310    /// In order to capture the output into this `Result<Output>` it is
2311    /// necessary to create new pipes between parent and child. Use
2312    /// `stdout(Stdio::piped())` or `stderr(Stdio::piped())`, respectively.
2313    ///
2314    /// # Examples
2315    ///
2316    /// ```should_panic
2317    /// use std::process::{Command, Stdio};
2318    ///
2319    /// let child = Command::new("/bin/cat")
2320    ///     .arg("file.txt")
2321    ///     .stdout(Stdio::piped())
2322    ///     .spawn()
2323    ///     .expect("failed to execute child");
2324    ///
2325    /// let output = child
2326    ///     .wait_with_output()
2327    ///     .expect("failed to wait on child");
2328    ///
2329    /// assert!(output.status.success());
2330    /// ```
2331    ///
2332    #[stable(feature = "process", since = "1.0.0")]
2333    pub fn wait_with_output(mut self) -> io::Result<Output> {
2334        drop(self.stdin.take());
2335
2336        let (mut stdout, mut stderr) = (Vec::new(), Vec::new());
2337        match (self.stdout.take(), self.stderr.take()) {
2338            (None, None) => {}
2339            (Some(mut out), None) => {
2340                let res = out.read_to_end(&mut stdout);
2341                res.unwrap();
2342            }
2343            (None, Some(mut err)) => {
2344                let res = err.read_to_end(&mut stderr);
2345                res.unwrap();
2346            }
2347            (Some(out), Some(err)) => {
2348                let res = read2(out.inner, &mut stdout, err.inner, &mut stderr);
2349                res.unwrap();
2350            }
2351        }
2352
2353        let status = self.wait()?;
2354        Ok(Output { status, stdout, stderr })
2355    }
2356}
2357
2358/// Terminates the current process with the specified exit code.
2359///
2360/// This function will never return and will immediately terminate the current
2361/// process. The exit code is passed through to the underlying OS and will be
2362/// available for consumption by another process.
2363///
2364/// Note that because this function never returns, and that it terminates the
2365/// process, no destructors on the current stack or any other thread's stack
2366/// will be run. If a clean shutdown is needed it is recommended to only call
2367/// this function at a known point where there are no more destructors left
2368/// to run; or, preferably, simply return a type implementing [`Termination`]
2369/// (such as [`ExitCode`] or `Result`) from the `main` function and avoid this
2370/// function altogether:
2371///
2372/// ```
2373/// # use std::io::Error as MyError;
2374/// fn main() -> Result<(), MyError> {
2375///     // ...
2376///     Ok(())
2377/// }
2378/// ```
2379///
2380/// In its current implementation, this function will execute exit handlers registered with `atexit`
2381/// as well as other platform-specific exit handlers (e.g. `fini` sections of ELF shared objects).
2382/// This means that Rust requires that all exit handlers are safe to execute at any time. In
2383/// particular, if an exit handler cleans up some state that might be concurrently accessed by other
2384/// threads, it is required that the exit handler performs suitable synchronization with those
2385/// threads. (The alternative to this requirement would be to not run exit handlers at all, which is
2386/// considered undesirable. Note that returning from `main` also calls `exit`, so making `exit` an
2387/// unsafe operation is not an option.)
2388///
2389/// ## Platform-specific behavior
2390///
2391/// **Unix**: On Unix-like platforms, it is unlikely that all 32 bits of `exit`
2392/// will be visible to a parent process inspecting the exit code. On most
2393/// Unix-like platforms, only the eight least-significant bits are considered.
2394///
2395/// For example, the exit code for this example will be `0` on Linux, but `256`
2396/// on Windows:
2397///
2398/// ```no_run
2399/// use std::process;
2400///
2401/// process::exit(0x0100);
2402/// ```
2403///
2404/// ### Safe interop with C code
2405///
2406/// On Unix, this function is currently implemented using the `exit` C function [`exit`][C-exit]. As
2407/// of C23, the C standard does not permit multiple threads to call `exit` concurrently. Rust
2408/// mitigates this with a lock, but if C code calls `exit`, that can still cause undefined behavior.
2409/// Note that returning from `main` is equivalent to calling `exit`.
2410///
2411/// Therefore, it is undefined behavior to have two concurrent threads perform the following
2412/// without synchronization:
2413/// - One thread calls Rust's `exit` function or returns from Rust's `main` function
2414/// - Another thread calls the C function `exit` or `quick_exit`, or returns from C's `main` function
2415///
2416/// Note that if a binary contains multiple copies of the Rust runtime (e.g., when combining
2417/// multiple `cdylib` or `staticlib`), they each have their own separate lock, so from the
2418/// perspective of code running in one of the Rust runtimes, the "outside" Rust code is basically C
2419/// code, and concurrent `exit` again causes undefined behavior.
2420///
2421/// Individual C implementations might provide more guarantees than the standard and permit concurrent
2422/// calls to `exit`; consult the documentation of your C implementation for details.
2423///
2424/// For some of the on-going discussion to make `exit` thread-safe in C, see:
2425/// - [Rust issue #126600](https://github.com/rust-lang/rust/issues/126600)
2426/// - [Austin Group Bugzilla (for POSIX)](https://austingroupbugs.net/view.php?id=1845)
2427/// - [GNU C library Bugzilla](https://sourceware.org/bugzilla/show_bug.cgi?id=31997)
2428///
2429/// [C-exit]: https://en.cppreference.com/w/c/program/exit
2430#[stable(feature = "rust1", since = "1.0.0")]
2431#[cfg_attr(not(test), rustc_diagnostic_item = "process_exit")]
2432pub fn exit(code: i32) -> ! {
2433    crate::rt::cleanup();
2434    crate::sys::os::exit(code)
2435}
2436
2437/// Terminates the process in an abnormal fashion.
2438///
2439/// The function will never return and will immediately terminate the current
2440/// process in a platform specific "abnormal" manner. As a consequence,
2441/// no destructors on the current stack or any other thread's stack
2442/// will be run, Rust IO buffers (eg, from `BufWriter`) will not be flushed,
2443/// and C stdio buffers will (on most platforms) not be flushed.
2444///
2445/// This is in contrast to the default behavior of [`panic!`] which unwinds
2446/// the current thread's stack and calls all destructors.
2447/// When `panic="abort"` is set, either as an argument to `rustc` or in a
2448/// crate's Cargo.toml, [`panic!`] and `abort` are similar. However,
2449/// [`panic!`] will still call the [panic hook] while `abort` will not.
2450///
2451/// If a clean shutdown is needed it is recommended to only call
2452/// this function at a known point where there are no more destructors left
2453/// to run.
2454///
2455/// The process's termination will be similar to that from the C `abort()`
2456/// function.  On Unix, the process will terminate with signal `SIGABRT`, which
2457/// typically means that the shell prints "Aborted".
2458///
2459/// # Examples
2460///
2461/// ```no_run
2462/// use std::process;
2463///
2464/// fn main() {
2465///     println!("aborting");
2466///
2467///     process::abort();
2468///
2469///     // execution never gets here
2470/// }
2471/// ```
2472///
2473/// The `abort` function terminates the process, so the destructor will not
2474/// get run on the example below:
2475///
2476/// ```no_run
2477/// use std::process;
2478///
2479/// struct HasDrop;
2480///
2481/// impl Drop for HasDrop {
2482///     fn drop(&mut self) {
2483///         println!("This will never be printed!");
2484///     }
2485/// }
2486///
2487/// fn main() {
2488///     let _x = HasDrop;
2489///     process::abort();
2490///     // the destructor implemented for HasDrop will never get run
2491/// }
2492/// ```
2493///
2494/// [panic hook]: crate::panic::set_hook
2495#[stable(feature = "process_abort", since = "1.17.0")]
2496#[cold]
2497#[cfg_attr(not(test), rustc_diagnostic_item = "process_abort")]
2498pub fn abort() -> ! {
2499    crate::sys::abort_internal();
2500}
2501
2502/// Returns the OS-assigned process identifier associated with this process.
2503///
2504/// # Examples
2505///
2506/// ```no_run
2507/// use std::process;
2508///
2509/// println!("My pid is {}", process::id());
2510/// ```
2511#[must_use]
2512#[stable(feature = "getpid", since = "1.26.0")]
2513pub fn id() -> u32 {
2514    crate::sys::os::getpid()
2515}
2516
2517/// A trait for implementing arbitrary return types in the `main` function.
2518///
2519/// The C-main function only supports returning integers.
2520/// So, every type implementing the `Termination` trait has to be converted
2521/// to an integer.
2522///
2523/// The default implementations are returning `libc::EXIT_SUCCESS` to indicate
2524/// a successful execution. In case of a failure, `libc::EXIT_FAILURE` is returned.
2525///
2526/// Because different runtimes have different specifications on the return value
2527/// of the `main` function, this trait is likely to be available only on
2528/// standard library's runtime for convenience. Other runtimes are not required
2529/// to provide similar functionality.
2530#[cfg_attr(not(any(test, doctest)), lang = "termination")]
2531#[stable(feature = "termination_trait_lib", since = "1.61.0")]
2532#[rustc_on_unimplemented(on(
2533    cause = "MainFunctionType",
2534    message = "`main` has invalid return type `{Self}`",
2535    label = "`main` can only return types that implement `{Termination}`"
2536))]
2537pub trait Termination {
2538    /// Is called to get the representation of the value as status code.
2539    /// This status code is returned to the operating system.
2540    #[stable(feature = "termination_trait_lib", since = "1.61.0")]
2541    fn report(self) -> ExitCode;
2542}
2543
2544#[stable(feature = "termination_trait_lib", since = "1.61.0")]
2545impl Termination for () {
2546    #[inline]
2547    fn report(self) -> ExitCode {
2548        ExitCode::SUCCESS
2549    }
2550}
2551
2552#[stable(feature = "termination_trait_lib", since = "1.61.0")]
2553impl Termination for ! {
2554    fn report(self) -> ExitCode {
2555        self
2556    }
2557}
2558
2559#[stable(feature = "termination_trait_lib", since = "1.61.0")]
2560impl Termination for Infallible {
2561    fn report(self) -> ExitCode {
2562        match self {}
2563    }
2564}
2565
2566#[stable(feature = "termination_trait_lib", since = "1.61.0")]
2567impl Termination for ExitCode {
2568    #[inline]
2569    fn report(self) -> ExitCode {
2570        self
2571    }
2572}
2573
2574#[stable(feature = "termination_trait_lib", since = "1.61.0")]
2575impl<T: Termination, E: fmt::Debug> Termination for Result<T, E> {
2576    fn report(self) -> ExitCode {
2577        match self {
2578            Ok(val) => val.report(),
2579            Err(err) => {
2580                io::attempt_print_to_stderr(format_args_nl!("Error: {err:?}"));
2581                ExitCode::FAILURE
2582            }
2583        }
2584    }
2585}