Finalizing a Servlet - The Java EE 6 Tutorial (original) (raw)
2. Using the Tutorial Examples
3. Getting Started with Web Applications
4. JavaServer Faces Technology
7. Using JavaServer Faces Technology in Web Pages
8. Using Converters, Listeners, and Validators
9. Developing with JavaServer Faces Technology
10. JavaServer Faces Technology: Advanced Concepts
11. Using Ajax with JavaServer Faces Technology
12. Composite Components: Advanced Topics and Example
13. Creating Custom UI Components and Other Custom Objects
14. Configuring JavaServer Faces Applications
Handling Servlet Lifecycle Events
Controlling Concurrent Access to Shared Resources
Creating and Initializing a Servlet
Getting Information from Requests
Filtering Requests and Responses
Programming Customized Requests and Responses
To Specify Filter Mappings Using NetBeans IDE
Including Other Resources in the Response
Transferring Control to Another Web Component
Associating Objects with a Session
To Set the Timeout Period Using NetBeans IDE
Components of the mood Example Application
To Run the mood Example Using NetBeans IDE
To Run the mood Example Using Ant
Further Information about Java Servlet Technology
16. Uploading Files with Java Servlet Technology
17. Internationalizing and Localizing Web Applications
18. Introduction to Web Services
19. Building Web Services with JAX-WS
20. Building RESTful Web Services with JAX-RS
21. JAX-RS: Advanced Topics and Example
23. Getting Started with Enterprise Beans
24. Running the Enterprise Bean Examples
25. A Message-Driven Bean Example
26. Using the Embedded Enterprise Bean Container
27. Using Asynchronous Method Invocation in Session Beans
Part V Contexts and Dependency Injection for the Java EE Platform
28. Introduction to Contexts and Dependency Injection for the Java EE Platform
29. Running the Basic Contexts and Dependency Injection Examples
30. Contexts and Dependency Injection for the Java EE Platform: Advanced Topics
31. Running the Advanced Contexts and Dependency Injection Examples
32. Introduction to the Java Persistence API
33. Running the Persistence Examples
34. The Java Persistence Query Language
35. Using the Criteria API to Create Queries
36. Creating and Using String-Based Criteria Queries
37. Controlling Concurrent Access to Entity Data with Locking
38. Using a Second-Level Cache with Java Persistence API Applications
39. Introduction to Security in the Java EE Platform
40. Getting Started Securing Web Applications
41. Getting Started Securing Enterprise Applications
42. Java EE Security: Advanced Topics
Part VIII Java EE Supporting Technologies
43. Introduction to Java EE Supporting Technologies
45. Resources and Resource Adapters
46. The Resource Adapter Example
47. Java Message Service Concepts
48. Java Message Service Examples
49. Bean Validation: Advanced Topics
50. Using Java EE Interceptors
51. Duke's Bookstore Case Study Example
52. Duke's Tutoring Case Study Example
53. Duke's Forest Case Study Example
The web container may determine that a servlet should be removed from service (for example, when a container wants to reclaim memory resources or when it is being shut down). In such a case, the container calls thedestroy method of the Servlet interface. In this method, you release any resources the servlet is using and save any persistent state. The destroy method releases the database object created in the init method .
A servlet’s service methods should all be complete when a servlet is removed. The server tries to ensure this by calling the destroy method only after all service requests have returned or after a server-specific grace period, whichever comes first. If your servlet has operations that may run longer than the server’s grace period, the operations could still be running when destroy is called. You must make sure that any threads still handling client requests complete.
The remainder of this section explains how to do the following:
- Keep track of how many threads are currently running the service method.
- Provide a clean shutdown by having the destroy method notify long-running threads of the shutdown and wait for them to complete.
- Have the long-running methods poll periodically to check for shutdown and, if necessary, stop working, clean up, and return.
Tracking Service Requests
To track service requests, include in your servlet class a field that counts the number of service methods that are running. The field should have synchronized access methods to increment, decrement, and return its value:
public class ShutdownExample extends HttpServlet { private int serviceCounter = 0; ... // Access methods for serviceCounter protected synchronized void enteringServiceMethod() { serviceCounter++; } protected synchronized void leavingServiceMethod() { serviceCounter--; } protected synchronized int numServices() { return serviceCounter; } }
The service method should increment the service counter each time the method is entered and should decrement the counter each time the method returns. This is one of the few times that your HttpServlet subclass should override theservice method. The new method should call super.service to preserve the functionality of the original service method:
protected void service(HttpServletRequest req, HttpServletResponse resp) throws ServletException,IOException { enteringServiceMethod(); try { super.service(req, resp); } finally { leavingServiceMethod(); } }
Notifying Methods to Shut Down
To ensure a clean shutdown, your destroy method should not release any shared resources until all the service requests have completed. One part of doing this is to check the service counter. Another part is to notify the long-running methods that it is time to shut down. For this notification, another field is required. The field should have the usual access methods:
public class ShutdownExample extends HttpServlet { private boolean shuttingDown; ... //Access methods for shuttingDown protected synchronized void setShuttingDown(boolean flag) { shuttingDown = flag; } protected synchronized boolean isShuttingDown() { return shuttingDown; } }
Here is an example of the destroy method using these fields to provide a clean shutdown:
public void destroy() { /* Check to see whether there are still service methods /* /* running, and if there are, tell them to stop. */ if (numServices() > 0) { setShuttingDown(true); }
/* Wait for the service methods to stop. */
while(numServices() > 0) {
try {
Thread.sleep(interval);
} catch (InterruptedException e) {
}
}
}
Creating Polite Long-Running Methods
The final step in providing a clean shutdown is to make any long-running methods behave politely. Methods that might run for a long time should check the value of the field that notifies them of shutdowns and should interrupt their work, if necessary:
public void doPost(...) { ... for(i = 0; ((i < lotsOfStuffToDo) && !isShuttingDown()); i++) { try { partOfLongRunningOperation(i); } catch (InterruptedException e) { ... } } }
Copyright © 2013, Oracle and/or its affiliates. All rights reserved. Legal Notices