numpy.exp — NumPy v1.11 Manual (original) (raw)
numpy.exp(_x_[, _out_]) = <ufunc 'exp'>¶
Calculate the exponential of all elements in the input array.
Parameters: | x : array_like Input values. |
---|---|
Returns: | out : ndarray Output array, element-wise exponential of x. |
See also
Calculate exp(x) - 1 for all elements in the array.
Calculate 2**x for all elements in the array.
Notes
The irrational number e is also known as Euler’s number. It is approximately 2.718281, and is the base of the natural logarithm,ln (this means that, if , then
. For real input, exp(x) is always positive.
For complex arguments, x = a + ib, we can write. The first term,
, is already known (it is the real argument, described above). The second term,
, is
, a function with magnitude 1 and a periodic phase.
References
[R18] | Wikipedia, “Exponential function”,http://en.wikipedia.org/wiki/Exponential_function |
---|
[R19] | M. Abramovitz and I. A. Stegun, “Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables,” Dover, 1964, p. 69,http://www.math.sfu.ca/~cbm/aands/page_69.htm |
---|
Examples
Plot the magnitude and phase of exp(x) in the complex plane:
import matplotlib.pyplot as plt
x = np.linspace(-2np.pi, 2np.pi, 100) xx = x + 1j * x[:, np.newaxis] # a + ib over complex plane out = np.exp(xx)
plt.subplot(121) plt.imshow(np.abs(out), ... extent=[-2np.pi, 2np.pi, -2np.pi, 2np.pi]) plt.title('Magnitude of exp(x)')
plt.subplot(122) plt.imshow(np.angle(out), ... extent=[-2np.pi, 2np.pi, -2np.pi, 2np.pi]) plt.title('Phase (angle) of exp(x)') plt.show()
(Source code, png, pdf)