numpy.full_like — NumPy v1.11 Manual (original) (raw)

numpy.full_like(a, fill_value, dtype=None, order='K', subok=True)[source]

Return a full array with the same shape and type as a given array.

Parameters: a : array_like The shape and data-type of a define these same attributes of the returned array. fill_value : scalar Fill value. dtype : data-type, optional Overrides the data type of the result. order : {‘C’, ‘F’, ‘A’, or ‘K’}, optional Overrides the memory layout of the result. ‘C’ means C-order, ‘F’ means F-order, ‘A’ means ‘F’ if a is Fortran contiguous, ‘C’ otherwise. ‘K’ means match the layout of a as closely as possible. subok : bool, optional. If True, then the newly created array will use the sub-class type of ‘a’, otherwise it will be a base-class array. Defaults to True.
Returns: out : ndarray Array of fill_value with the same shape and type as a.

See also

zeros_like

Return an array of zeros with shape and type of input.

ones_like

Return an array of ones with shape and type of input.

empty_like

Return an empty array with shape and type of input.

zeros

Return a new array setting values to zero.

ones

Return a new array setting values to one.

empty

Return a new uninitialized array.

full

Fill a new array.

Examples

x = np.arange(6, dtype=np.int) np.full_like(x, 1) array([1, 1, 1, 1, 1, 1]) np.full_like(x, 0.1) array([0, 0, 0, 0, 0, 0]) np.full_like(x, 0.1, dtype=np.double) array([ 0.1, 0.1, 0.1, 0.1, 0.1, 0.1]) np.full_like(x, np.nan, dtype=np.double) array([ nan, nan, nan, nan, nan, nan])

y = np.arange(6, dtype=np.double) np.full_like(y, 0.1) array([ 0.1, 0.1, 0.1, 0.1, 0.1, 0.1])