numpy.ma.masked_object — NumPy v1.11 Manual (original) (raw)

numpy.ma.masked_object(x, value, copy=True, shrink=True)[source]

Mask the array x where the data are exactly equal to value.

This function is similar to masked_values, but only suitable for object arrays: for floating point, use masked_values instead.

Parameters: x : array_like Array to mask value : object Comparison value copy : {True, False}, optional Whether to return a copy of x. shrink : {True, False}, optional Whether to collapse a mask full of False to nomask
Returns: result : MaskedArray The result of masking x where equal to value.

Examples

import numpy.ma as ma food = np.array(['green_eggs', 'ham'], dtype=object)

don't eat spoiled food

eat = ma.masked_object(food, 'green_eggs') print(eat) [-- ham]

plain ol` ham is boring

fresh_food = np.array(['cheese', 'ham', 'pineapple'], dtype=object) eat = ma.masked_object(fresh_food, 'green_eggs') print(eat) [cheese ham pineapple]

Note that mask is set to nomask if possible.

eat masked_array(data = [cheese ham pineapple], mask = False, fill_value=?)