Constants of the numpy.ma module — NumPy v1.11 Manual (original) (raw)
In addition to the MaskedArray class, the numpy.ma module defines several constants.
numpy.ma.masked¶
The masked constant is a special case of MaskedArray, with a float datatype and a null shape. It is used to test whether a specific entry of a masked array is masked, or to mask one or several entries of a masked array:
x = ma.array([1, 2, 3], mask=[0, 1, 0]) x[1] is ma.masked True x[-1] = ma.masked x masked_array(data = [1 -- --], mask = [False True True], fill_value = 999999)
numpy.ma.nomask¶
Value indicating that a masked array has no invalid entry.nomask is used internally to speed up computations when the mask is not needed.
numpy.ma.masked_print_options¶
String used in lieu of missing data when a masked array is printed. By default, this string is '--'.
The MaskedArray class¶
class numpy.ma.MaskedArray[source]¶
A subclass of
designed to manipulate numerical arrays with missing data.
An instance of MaskedArray can be thought as the combination of several elements:
- The data, as a regular numpy.ndarray of any shape or datatype (the data).
- A boolean mask with the same shape as the data, where a True value indicates that the corresponding element of the data is invalid. The special value nomask is also acceptable for arrays without named fields, and indicates that no data is invalid.
- A fill_value, a value that may be used to replace the invalid entries in order to return a standard numpy.ndarray.
Attributes and properties of masked arrays¶
MaskedArray.data¶
Returns the underlying data, as a view of the masked array. If the underlying data is a subclass of numpy.ndarray, it is returned as such.
x = ma.array(np.matrix([[1, 2], [3, 4]]), mask=[[0, 1], [1, 0]]) x.data matrix([[1, 2], [3, 4]])
The type of the data can be accessed through the baseclassattribute.
MaskedArray.mask¶
Returns the underlying mask, as an array with the same shape and structure as the data, but where all fields are atomically booleans. A value of True indicates an invalid entry.
MaskedArray.recordmask¶
Returns the mask of the array if it has no named fields. For structured arrays, returns a ndarray of booleans where entries are True if allthe fields are masked, False otherwise:
x = ma.array([(1, 1), (2, 2), (3, 3), (4, 4), (5, 5)], ... mask=[(0, 0), (1, 0), (1, 1), (0, 1), (0, 0)], ... dtype=[('a', int), ('b', int)]) x.recordmask array([False, False, True, False, False], dtype=bool)
MaskedArray.fill_value¶
Returns the value used to fill the invalid entries of a masked array. The value is either a scalar (if the masked array has no named fields), or a 0-D ndarray with the same dtype as the masked array if it has named fields.
The default filling value depends on the datatype of the array:
datatype | default |
---|---|
bool | True |
int | 999999 |
float | 1.e20 |
complex | 1.e20+0j |
object | ‘?’ |
string | ‘N/A’ |
MaskedArray.baseclass¶
Returns the class of the underlying data.
x = ma.array(np.matrix([[1, 2], [3, 4]]), mask=[[0, 0], [1, 0]]) x.baseclass <class 'numpy.matrixlib.defmatrix.matrix'>
MaskedArray.sharedmask¶
Returns whether the mask of the array is shared between several masked arrays. If this is the case, any modification to the mask of one array will be propagated to the others.
MaskedArray.hardmask¶
Returns whether the mask is hard (True) or soft (False). When the mask is hard, masked entries cannot be unmasked.
As MaskedArray is a subclass of ndarray, a masked array also inherits all the attributes and properties of a ndarray instance.
MaskedArray.base | Base object if memory is from some other object. |
---|---|
MaskedArray.ctypes | An object to simplify the interaction of the array with the ctypes module. |
MaskedArray.dtype | Data-type of the array’s elements. |
MaskedArray.flags | Information about the memory layout of the array. |
MaskedArray.itemsize | Length of one array element in bytes. |
MaskedArray.nbytes | Total bytes consumed by the elements of the array. |
MaskedArray.ndim | Number of array dimensions. |
MaskedArray.shape | Tuple of array dimensions. |
MaskedArray.size | Number of elements in the array. |
MaskedArray.strides | Tuple of bytes to step in each dimension when traversing an array. |
MaskedArray.imag | Imaginary part. |
MaskedArray.real | Real part |
MaskedArray.flat | Flat version of the array. |
MaskedArray.__array_priority__ |
MaskedArray methods¶
Item selection and manipulation¶
For array methods that take an axis keyword, it defaults to None. If axis is None, then the array is treated as a 1-D array. Any other value for axis represents the dimension along which the operation should proceed.
MaskedArray.argmax([axis, fill_value, out]) | Returns array of indices of the maximum values along the given axis. |
---|---|
MaskedArray.argmin([axis, fill_value, out]) | Return array of indices to the minimum values along the given axis. |
MaskedArray.argsort([axis, kind, order, ...]) | Return an ndarray of indices that sort the array along the specified axis. |
MaskedArray.choose(choices[, out, mode]) | Use an index array to construct a new array from a set of choices. |
MaskedArray.compress(condition[, axis, out]) | Return a where condition is True. |
MaskedArray.diagonal([offset, axis1, axis2]) | Return specified diagonals. |
MaskedArray.fill(value) | Fill the array with a scalar value. |
MaskedArray.item(*args) | Copy an element of an array to a standard Python scalar and return it. |
MaskedArray.nonzero() | Return the indices of unmasked elements that are not zero. |
MaskedArray.put(indices, values[, mode]) | Set storage-indexed locations to corresponding values. |
MaskedArray.repeat(repeats[, axis]) | Repeat elements of an array. |
MaskedArray.searchsorted(v[, side, sorter]) | Find indices where elements of v should be inserted in a to maintain order. |
MaskedArray.sort([axis, kind, order, ...]) | Sort the array, in-place |
MaskedArray.take(indices[, axis, out, mode]) |
Calculations¶
MaskedArray.all([axis, out]) | Check if all of the elements of a are true. |
---|---|
MaskedArray.anom([axis, dtype]) | Compute the anomalies (deviations from the arithmetic mean) along the given axis. |
MaskedArray.any([axis, out]) | Check if any of the elements of a are true. |
MaskedArray.clip([min, max, out]) | Return an array whose values are limited to [min, max]. |
MaskedArray.conj() | Complex-conjugate all elements. |
MaskedArray.conjugate() | Return the complex conjugate, element-wise. |
MaskedArray.cumprod([axis, dtype, out]) | Return the cumulative product of the elements along the given axis. |
MaskedArray.cumsum([axis, dtype, out]) | Return the cumulative sum of the elements along the given axis. |
MaskedArray.max([axis, out, fill_value]) | Return the maximum along a given axis. |
MaskedArray.mean([axis, dtype, out]) | Returns the average of the array elements. |
MaskedArray.min([axis, out, fill_value]) | Return the minimum along a given axis. |
MaskedArray.prod([axis, dtype, out]) | Return the product of the array elements over the given axis. |
MaskedArray.product([axis, dtype, out]) | Return the product of the array elements over the given axis. |
MaskedArray.ptp([axis, out, fill_value]) | Return (maximum - minimum) along the the given dimension (i.e. |
MaskedArray.round([decimals, out]) | Return a with each element rounded to the given number of decimals. |
MaskedArray.std([axis, dtype, out, ddof]) | Compute the standard deviation along the specified axis. |
MaskedArray.sum([axis, dtype, out]) | Return the sum of the array elements over the given axis. |
MaskedArray.trace([offset, axis1, axis2, ...]) | Return the sum along diagonals of the array. |
MaskedArray.var([axis, dtype, out, ddof]) | Compute the variance along the specified axis. |
Arithmetic and comparison operations¶
Arithmetic:¶
MaskedArray.__abs__() <==> abs(x) | |
---|---|
MaskedArray.__add__(other) | Add self to other, and return a new masked array. |
MaskedArray.__radd__(other) | Add other to self, and return a new masked array. |
MaskedArray.__sub__(other) | Subtract other from self, and return a new masked array. |
MaskedArray.__rsub__(other) | Subtract self from other, and return a new masked array. |
MaskedArray.__mul__(other) | Multiply self by other, and return a new masked array. |
MaskedArray.__rmul__(other) | Multiply other by self, and return a new masked array. |
MaskedArray.__div__(other) | Divide other into self, and return a new masked array. |
MaskedArray.__rdiv__ | x.__rdiv__(y) <==> y/x |
MaskedArray.__truediv__(other) | Divide other into self, and return a new masked array. |
MaskedArray.__rtruediv__(other) | Divide self into other, and return a new masked array. |
MaskedArray.__floordiv__(other) | Divide other into self, and return a new masked array. |
MaskedArray.__rfloordiv__(other) | Divide self into other, and return a new masked array. |
MaskedArray.__mod__ | x.__mod__(y) <==> x%y |
MaskedArray.__rmod__ | x.__rmod__(y) <==> y%x |
MaskedArray.__divmod__(y) <==> divmod(x, y) | |
MaskedArray.__rdivmod__(y) <==> divmod(y, x) | |
MaskedArray.__pow__(other) | Raise self to the power other, masking the potential NaNs/Infs |
MaskedArray.__rpow__(other) | Raise other to the power self, masking the potential NaNs/Infs |
MaskedArray.__lshift__ | x.__lshift__(y) <==> x<<y |
MaskedArray.__rlshift__ | x.__rlshift__(y) <==> y<<x |
MaskedArray.__rshift__ | x.__rshift__(y) <==> x>>y |
MaskedArray.__rrshift__ | x.__rrshift__(y) <==> y>>x |
MaskedArray.__and__ | x.__and__(y) <==> x&y |
MaskedArray.__rand__ | x.__rand__(y) <==> y&x |
MaskedArray.__or__ | x.__or__(y) <==> x|y |
MaskedArray.__ror__ | x.__ror__(y) <==> y|x |
MaskedArray.__xor__ | x.__xor__(y) <==> x^y |
MaskedArray.__rxor__ | x.__rxor__(y) <==> y^x |
Special methods¶
For standard library functions:
MaskedArray.__copy__([order]) | Return a copy of the array. |
---|---|
MaskedArray.__deepcopy__([memo]) | |
MaskedArray.__getstate__() | Return the internal state of the masked array, for pickling purposes. |
MaskedArray.__reduce__() | Return a 3-tuple for pickling a MaskedArray. |
MaskedArray.__setstate__(state) | Restore the internal state of the masked array, for pickling purposes. |
Basic customization:
MaskedArray.__new__([data, mask, dtype, ...]) | Create a new masked array from scratch. |
---|---|
MaskedArray.__array__(...) | Returns either a new reference to self if dtype is not given or a new array of provided data type if dtype is different from the current dtype of the array. |
MaskedArray.__array_wrap__(obj[, context]) | Special hook for ufuncs. |
Container customization: (see Indexing)
MaskedArray.__len__() <==> len(x) | |
---|---|
MaskedArray.__getitem__(indx) | x.__getitem__(y) <==> x[y] |
MaskedArray.__setitem__(indx, value) | x.__setitem__(i, y) <==> x[i]=y |
MaskedArray.__delitem__ | x.__delitem__(y) <==> del x[y] |
MaskedArray.__getslice__(i, j) | x.__getslice__(i, j) <==> x[i:j] |
MaskedArray.__setslice__(i, j, value) | x.__setslice__(i, j, value) <==> x[i:j]=value |
MaskedArray.__contains__ | x.__contains__(y) <==> y in x |
Specific methods¶
Counting the missing elements¶
MaskedArray.count([axis]) | Count the non-masked elements of the array along the given axis. |
---|