ev — SciPy v1.15.3 Manual (original) (raw)
scipy.interpolate.SmoothSphereBivariateSpline.
SmoothSphereBivariateSpline.ev(theta, phi, dtheta=0, dphi=0)[source]#
Evaluate the spline at points
Returns the interpolated value at (theta[i], phi[i]), i=0,...,len(theta)-1
.
Parameters:
theta, phiarray_like
Input coordinates. Standard Numpy broadcasting is obeyed. The ordering of axes is consistent with np.meshgrid(…, indexing=”ij”) and inconsistent with the default ordering np.meshgrid(…, indexing=”xy”).
dthetaint, optional
Order of theta-derivative
Added in version 0.14.0.
dphiint, optional
Order of phi-derivative
Added in version 0.14.0.
Examples
Suppose that we want to use splines to interpolate a bivariate function on a sphere. The value of the function is known on a grid of longitudes and colatitudes.
import numpy as np from scipy.interpolate import RectSphereBivariateSpline def f(theta, phi): ... return np.sin(theta) * np.cos(phi)
We evaluate the function on the grid. Note that the default indexing=”xy” of meshgrid would result in an unexpected (transposed) result after interpolation.
thetaarr = np.linspace(0, np.pi, 22)[1:-1] phiarr = np.linspace(0, 2 * np.pi, 21)[:-1] thetagrid, phigrid = np.meshgrid(thetaarr, phiarr, indexing="ij") zdata = f(thetagrid, phigrid)
We next set up the interpolator and use it to evaluate the function at points not on the original grid.
rsbs = RectSphereBivariateSpline(thetaarr, phiarr, zdata) thetainterp = np.linspace(thetaarr[0], thetaarr[-1], 200) phiinterp = np.linspace(phiarr[0], phiarr[-1], 200) zinterp = rsbs.ev(thetainterp, phiinterp)
Finally we plot the original data for a diagonal slice through the initial grid, and the spline approximation along the same slice.
import matplotlib.pyplot as plt fig = plt.figure() ax1 = fig.add_subplot(1, 1, 1) ax1.plot(np.sin(thetaarr) * np.sin(phiarr), np.diag(zdata), "or") ax1.plot(np.sin(thetainterp) * np.sin(phiinterp), zinterp, "-b") plt.show()