lu_factor — SciPy v1.15.3 Manual (original) (raw)

scipy.linalg.

scipy.linalg.lu_factor(a, overwrite_a=False, check_finite=True)[source]#

Compute pivoted LU decomposition of a matrix.

The decomposition is:

where P is a permutation matrix, L lower triangular with unit diagonal elements, and U upper triangular.

Parameters:

a(M, N) array_like

Matrix to decompose

overwrite_abool, optional

Whether to overwrite data in A (may increase performance)

check_finitebool, optional

Whether to check that the input matrix contains only finite numbers. Disabling may give a performance gain, but may result in problems (crashes, non-termination) if the inputs do contain infinities or NaNs.

Returns:

lu(M, N) ndarray

Matrix containing U in its upper triangle, and L in its lower triangle. The unit diagonal elements of L are not stored.

piv(K,) ndarray

Pivot indices representing the permutation matrix P: row i of matrix was interchanged with row piv[i]. Of shape (K,), with K = min(M, N).

See also

lu

gives lu factorization in more user-friendly format

lu_solve

solve an equation system using the LU factorization of a matrix

Notes

This is a wrapper to the *GETRF routines from LAPACK. Unlikelu, it outputs the L and U factors into a single array and returns pivot indices instead of a permutation matrix.

While the underlying *GETRF routines return 1-based pivot indices, thepiv array returned by lu_factor contains 0-based indices.

Examples

import numpy as np from scipy.linalg import lu_factor A = np.array([[2, 5, 8, 7], [5, 2, 2, 8], [7, 5, 6, 6], [5, 4, 4, 8]]) lu, piv = lu_factor(A) piv array([2, 2, 3, 3], dtype=int32)

Convert LAPACK’s piv array to NumPy index and test the permutation

def pivot_to_permutation(piv): ... perm = np.arange(len(piv)) ... for i in range(len(piv)): ... perm[i], perm[piv[i]] = perm[piv[i]], perm[i] ... return perm ... p_inv = pivot_to_permutation(piv) p_inv array([2, 0, 3, 1]) L, U = np.tril(lu, k=-1) + np.eye(4), np.triu(lu) np.allclose(A[p_inv] - L @ U, np.zeros((4, 4))) True

The P matrix in P L U is defined by the inverse permutation and can be recovered using argsort:

p = np.argsort(p_inv) p array([1, 3, 0, 2]) np.allclose(A - L[p] @ U, np.zeros((4, 4))) True

or alternatively:

P = np.eye(4)[p] np.allclose(A - P @ L @ U, np.zeros((4, 4))) True