get_window — SciPy v1.15.3 Manual (original) (raw)
scipy.signal.
scipy.signal.get_window(window, Nx, fftbins=True)[source]#
Return a window of a given length and type.
Parameters:
windowstring, float, or tuple
The type of window to create. See below for more details.
Nxint
The number of samples in the window.
fftbinsbool, optional
If True (default), create a “periodic” window, ready to use with_ifftshift_ and be multiplied by the result of an FFT (see alsofftfreq). If False, create a “symmetric” window, for use in filter design.
Returns:
get_windowndarray
Returns a window of length Nx and type window
Notes
Window types:
- boxcar
- triang
- blackman
- hamming
- hann
- bartlett
- flattop
- parzen
- bohman
- blackmanharris
- nuttall
- barthann
- cosine
- exponential
- tukey
- taylor
- lanczos
- kaiser (needs beta)
- kaiser_bessel_derived (needs beta)
- gaussian (needs standard deviation)
- general_cosine (needs weighting coefficients)
- general_gaussian (needs power, width)
- general_hamming (needs window coefficient)
- dpss (needs normalized half-bandwidth)
- chebwin (needs attenuation)
If the window requires no parameters, then window can be a string.
If the window requires parameters, then window must be a tuple with the first argument the string name of the window, and the next arguments the needed parameters.
If window is a floating point number, it is interpreted as the beta parameter of the kaiser window.
Each of the window types listed above is also the name of a function that can be called directly to create a window of that type.
Examples
from scipy import signal signal.get_window('triang', 7) array([ 0.125, 0.375, 0.625, 0.875, 0.875, 0.625, 0.375]) signal.get_window(('kaiser', 4.0), 9) array([ 0.08848053, 0.29425961, 0.56437221, 0.82160913, 0.97885093, 0.97885093, 0.82160913, 0.56437221, 0.29425961]) signal.get_window(('exponential', None, 1.), 9) array([ 0.011109 , 0.03019738, 0.082085 , 0.22313016, 0.60653066, 0.60653066, 0.22313016, 0.082085 , 0.03019738]) signal.get_window(4.0, 9) array([ 0.08848053, 0.29425961, 0.56437221, 0.82160913, 0.97885093, 0.97885093, 0.82160913, 0.56437221, 0.29425961])