SuperLU — SciPy v1.15.3 Manual (original) (raw)

scipy.sparse.linalg.

class scipy.sparse.linalg.SuperLU#

LU factorization of a sparse matrix.

Factorization is represented as:

To construct these SuperLU objects, call the splu and spilufunctions.

Notes

Added in version 0.14.0.

Examples

The LU decomposition can be used to solve matrix equations. Consider:

import numpy as np from scipy.sparse import csc_array from scipy.sparse.linalg import splu A = csc_array([[1,2,0,4], [1,0,0,1], [1,0,2,1], [2,2,1,0.]])

This can be solved for a given right-hand side:

lu = splu(A) b = np.array([1, 2, 3, 4]) x = lu.solve(b) A.dot(x) array([ 1., 2., 3., 4.])

The lu object also contains an explicit representation of the decomposition. The permutations are represented as mappings of indices:

lu.perm_r array([2, 1, 3, 0], dtype=int32) # may vary lu.perm_c array([0, 1, 3, 2], dtype=int32) # may vary

The L and U factors are sparse matrices in CSC format:

lu.L.toarray() array([[ 1. , 0. , 0. , 0. ], # may vary [ 0.5, 1. , 0. , 0. ], [ 0.5, -1. , 1. , 0. ], [ 0.5, 1. , 0. , 1. ]]) lu.U.toarray() array([[ 2. , 2. , 0. , 1. ], # may vary [ 0. , -1. , 1. , -0.5], [ 0. , 0. , 5. , -1. ], [ 0. , 0. , 0. , 2. ]])

The permutation matrices can be constructed:

Pr = csc_array((np.ones(4), (lu.perm_r, np.arange(4)))) Pc = csc_array((np.ones(4), (np.arange(4), lu.perm_c)))

We can reassemble the original matrix:

(Pr.T @ (lu.L @ lu.U) @ Pc.T).toarray() array([[ 1., 2., 0., 4.], [ 1., 0., 0., 1.], [ 1., 0., 2., 1.], [ 2., 2., 1., 0.]])

Attributes:

shape

Shape of the original matrix as a tuple of ints.

nnz

Number of nonzero elements in the matrix.

perm_c

Permutation Pc represented as an array of indices.

perm_r

Permutation Pr represented as an array of indices.

L

Lower triangular factor with unit diagonal as a scipy.sparse.csc_array.

U

Upper triangular factor as a scipy.sparse.csc_array.

Methods

solve(rhs[, trans]) Solves linear system of equations with one or several right-hand sides.