bicg — SciPy v1.15.3 Manual (original) (raw)
scipy.sparse.linalg.
scipy.sparse.linalg.bicg(A, b, x0=None, *, rtol=1e-05, atol=0.0, maxiter=None, M=None, callback=None)[source]#
Use BIConjugate Gradient iteration to solve Ax = b
.
Parameters:
A{sparse array, ndarray, LinearOperator}
The real or complex N-by-N matrix of the linear system. Alternatively, A can be a linear operator which can produce Ax
and A^T x
using, e.g.,scipy.sparse.linalg.LinearOperator
.
bndarray
Right hand side of the linear system. Has shape (N,) or (N,1).
x0ndarray
Starting guess for the solution.
rtol, atolfloat, optional
Parameters for the convergence test. For convergence,norm(b - A @ x) <= max(rtol*norm(b), atol)
should be satisfied. The default is atol=0.
and rtol=1e-5
.
maxiterinteger
Maximum number of iterations. Iteration will stop after maxiter steps even if the specified tolerance has not been achieved.
M{sparse array, ndarray, LinearOperator}
Preconditioner for A. It should approximate the inverse of A (see Notes). Effective preconditioning dramatically improves the rate of convergence, which implies that fewer iterations are needed to reach a given error tolerance.
callbackfunction
User-supplied function to call after each iteration. It is called as callback(xk)
, where xk
is the current solution vector.
Returns:
xndarray
The converged solution.
infointeger
Provides convergence information:
0 : successful exit >0 : convergence to tolerance not achieved, number of iterations <0 : parameter breakdown
Notes
The preconditioner M should be a matrix such that M @ A
has a smaller condition number than A, see [1] .
References
Examples
import numpy as np from scipy.sparse import csc_array from scipy.sparse.linalg import bicg A = csc_array([[3, 2, 0], [1, -1, 0], [0, 5, 1.]]) b = np.array([2., 4., -1.]) x, exitCode = bicg(A, b, atol=1e-5) print(exitCode) # 0 indicates successful convergence 0 np.allclose(A.dot(x), b) True