norm — SciPy v1.15.3 Manual (original) (raw)

scipy.sparse.linalg.

scipy.sparse.linalg.norm(x, ord=None, axis=None)[source]#

Norm of a sparse matrix

This function is able to return one of seven different matrix norms, depending on the value of the ord parameter.

Parameters:

xa sparse array

Input sparse array.

ord{non-zero int, inf, -inf, ‘fro’}, optional

Order of the norm (see table under Notes). inf means numpy’s_inf_ object.

axis{int, 2-tuple of ints, None}, optional

If axis is an integer, it specifies the axis of x along which to compute the vector norms. If axis is a 2-tuple, it specifies the axes that hold 2-D matrices, and the matrix norms of these matrices are computed. If axis is None then either a vector norm (when _x_is 1-D) or a matrix norm (when x is 2-D) is returned.

Returns:

nfloat or ndarray

Notes

Some of the ord are not implemented because some associated functions like, _multi_svd_norm, are not yet available for sparse array.

This docstring is modified based on numpy.linalg.norm.numpy/numpy

The following norms can be calculated:

ord norm for sparse arrays
None Frobenius norm
‘fro’ Frobenius norm
inf max(sum(abs(x), axis=1))
-inf min(sum(abs(x), axis=1))
0 abs(x).sum(axis=axis)
1 max(sum(abs(x), axis=0))
-1 min(sum(abs(x), axis=0))
2 Spectral norm (the largest singular value)
-2 Not implemented
other Not implemented

The Frobenius norm is given by [1]:

\(||A||_F = [\sum_{i,j} abs(a_{i,j})^2]^{1/2}\)

References

[1]

G. H. Golub and C. F. Van Loan, Matrix Computations, Baltimore, MD, Johns Hopkins University Press, 1985, pg. 15

Examples

from scipy.sparse import csr_array, diags_array import numpy as np from scipy.sparse.linalg import norm a = np.arange(9) - 4 a array([-4, -3, -2, -1, 0, 1, 2, 3, 4]) b = a.reshape((3, 3)) b array([[-4, -3, -2], [-1, 0, 1], [ 2, 3, 4]])

b = csr_array(b) norm(b) 7.745966692414834 norm(b, 'fro') 7.745966692414834 norm(b, np.inf) 9 norm(b, -np.inf) 2 norm(b, 1) 7 norm(b, -1) 6

The matrix 2-norm or the spectral norm is the largest singular value, computed approximately and with limitations.

b = diags_array([-1, 1], [0, 1], shape=(9, 10)) norm(b, 2) 1.9753...